K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^3+b\cdot0+c=2\\a+b+c=0\\-a-b+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2\\a+b=-2\\-a-b=4\end{matrix}\right.\Leftrightarrow\left(a,b,c\right)\in\varnothing\)

9 tháng 5 2017

Ta có f(x)=ax2+bx+c

f(0)=a.02+b.0+c=0+0+c=1\(\Rightarrow\)c=1.

f(1)=a.12+b.1+c=a+b+c=-1 (1)

f(-1)=a.(-1)2+b.(-1)+c=a-b+c=5 (2)

Thay c=1 vào (1), ta có:

a+b+c=a+b+1=-1\(\Rightarrow\)a+b=-2

a-b+c=a-b+1=5\(\Rightarrow\)a-b=4

\(\Rightarrow\)(a+b)+(a-b)=2a=-2+4=2\(\Rightarrow\)a=1

a+b=1+b=-2\(\Rightarrow\)b=-3

10 tháng 6 2020

ôi vlin sai roài :(( khocroi

10 tháng 6 2020

F(2) = 2 mà bạn

6 tháng 3

Ta có F(0)=c=0

=>c=0

Ta lại có F(1)=a×1^2+b×1+c=2

F(1)=a+b+0=2

F(1)=a+b=2 

Ta lại có F(2)=a×2^2+2b+c=2

F(2)=4a+2b+0=2

F(2)=4a+2b=2

F(2)=2a+b=1

F(2)=2a+b-2=1-2=-1

F(2)=2a+b-a-b=-1              (Do a+b=1)

F(2)=a=-1

Thay a=-1 vào a+b=1

Ta có -1+b=1

=>b=2

Vậy a=-1,b=2

4 tháng 8 2020

Xét đa thức :

\(f\left(x\right)=ax^2+bx+c\)

Ta có :

+) \(f\left(0\right)=1\)

\(\Leftrightarrow a.0^2+b.0+c=1\)

\(\Leftrightarrow c=1\)

+) \(f\left(1\right)=-1\)

\(\Leftrightarrow a.1^2+b.1+c=-1\)

\(\Leftrightarrow a+b+c=-1\)

\(\Leftrightarrow a+b=-2\)

Vậy..

4 tháng 8 2020

đề bị thiếu nhé !

Cậu viết đủ đề mình giải giúp cho !

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

20 tháng 7 2021

Bài 1 : 

\(P\left(0\right)=d=2017\)

\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)

\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)

\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)

Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)

Thay vào (*) ta được \(a+c=4\)(***)

Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****) 

(***) => \(8a+8c=32\)(*****)

Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)

Vậy  ....

20 tháng 7 2021

MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP LẮM Ạ.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.