K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2022

-Ta chia làm 2 bài:

*C/m: Khi 6a, 2b, a+b+c và d là số nguyên thì đa thức trên có giá trị nguyên với mọi x nguyên.

- 6a nguyên \(\Rightarrow\)a nguyên.

- 2b nguyên \(\Rightarrow\)b nguyên.

- a+b+c nguyên \(\Rightarrow\)c nguyên.

\(\Rightarrow\)đpcm.

*C/m: Khi đa thức trên có giá trị nguyên với mọi x nguyên thì 6a, 2b, a+b+c và d là số nguyên.

\(f\left(0\right)=d\) nguyên.

\(f\left(1\right)=a+b+c+d\) nguyên \(\Rightarrow\) a+b+c nguyên.

\(f\left(2\right)=8a+4b+2c+d\) nguyên \(\Rightarrow8a+4b+2c\) nguyên.

\(\Rightarrow4a+2b+c\) nguyên

\(\Rightarrow4a+2b+c-\left(a+b+c\right)\) nguyên.

\(\Rightarrow3a+b\) nguyên.

\(f\left(3\right)=27a+9b+3c+d\) nguyên \(\Rightarrow27a+9b+3c\) nguyên

\(\Rightarrow9a+3b+c\) nguyên

\(9a+3b+c-\left(a+b+c\right)\) nguyên.

\(\Rightarrow8a+2b\) nguyên \(\Rightarrow4a+b\) nguyên

\(\Rightarrow a,b\) nguyên.

 

 

 

3 tháng 5 2017

\(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

\(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)

Do f(x)=ax3+bx2+cx+d đạt giá trị nguyên với mọi x => d;a+b+c+d;-a+b-c+d nguyên

=>(a+b+c+d)+(-a+b-c+d)=2b+2d  mà d nguyên => 2d nguyên 

=>(2b+2d)-2d=2b nguyên

5 tháng 4 2018

Ta có :
f(0) = d
f(1) = a + b + c + d 
f(2) = 8a + 4b + c + d 

- Nếu f(x) có giá trị nguyên với mọi x thì d ; a + b + c + d ; 8a +4b + c + d có giá trị nguyên . 
- Do d nguyên a + b + c nguyên và (a + b + c + d) + (a + b + c) + 2b nguyên => 2b nguyên và 6a nguyên . 

C/m tương tự

23 tháng 2 2022

em xin lỗi vì đã chen vào chỗ học của m.n nhưng mọi người có thể tìm giúp em 1 người tên Nguyễn thị Ngọc Ánh{tên đăng nhập; nguyenthingocanh}đc ko ạ ?

đó là người chị nuôi của em bị mất tích trên olm này ạ....mong m.n người tìm hộ em người này   .....    nếu có tung tích gì thì m.n nói với em ạ

T_T

26 tháng 12 2016

\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)

Mà M(x) nguyên nên d nguyên

\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên

\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên

\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên

Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên

20 tháng 6 2020

\(P\left(0\right)=d\inℤ\left(1\right)\)

\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)

\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)

\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)

\(\Rightarrow6a\inℤ\)

Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:

$P(0)=d$ lẻ

$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.

Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:

$P(m)=am^3+bm^2+cm+d$

Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$

Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ

$\Rightarrow P(m)\neq 0$

Tóm lại $P(m)\neq 0$

$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.

 Ta có đpcm.