K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

(d3) // (d1) $ \Rightarrow a = 1 $

(d3) cắt (d2) tại điểm có hoành độ là 3

$ \Rightarrow x + b = -3x + 4 \\\Leftrightarrow 3 + b = -9 + 4 \\\Leftrightarrow b = -8 $

Vậy $ (d3): y = x - 8 $

18 tháng 4 2017

Để hai đường thẳng d1;  d2 cắt nhau tại một điểm nằm trên d3 khi và chỉ khi 3 đường thẳng d1;  d2; d3 đồng quy.

Giao điểm của d1 và d3 là nghiệm hệ phương trình:

x − 2 y ​ + 1 = 0 x + ​ y − 5 = 0 ⇔ x = 3 y = 2 ⇒ A ( 3 ;    2 )

Do 3 đường thẳng này đồng quy  nên điểm A thuộc d2. Suy ra:

3m -  (3m-2).2 + 2m – 2= 0

⇔ 3m – 6m + 4 + 2m – 2 =  0  ⇔  - m  + 2 = 0  ⇔  m= 2

Với m= 2 thì đường thẳng d2 :  2x -  4y  + 2= 0 hay  x- 2y + 1 =0 . Khi đó, đường thẳng d1 và d2 trùng nhau.

Vậy không có giá trị nào của m thỏa mãn.

ĐÁP ÁN D

5 tháng 5 2020

aetusrkyi

M thuộc (d1) nên M(1-2t;1+t)

Theo đề, ta có: d(M;d2)=d(M;d3)

=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)

=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|

=>|-2t+3|=|-11t+3|

=>-2t+3=-11t+3 hoặc -2t+3=11t-3

=>t=0 hoặc t=6/13

=>M(1;1); M(1/13; 19/13)

\(\left\{{}\begin{matrix}x=4+2t\\y=1-5t\end{matrix}\right.\)

Vậy: VTCP là (2;-5) và điểm mà (d1) đi qua là A(4;1)

=>VTPT là (5;2)

Phương trình đường thẳng của (d1) là:

5(x-4)+2(y-1)=0

=>5x-20+2y-2=0

=>5x+2y-22=0

(d2): 2x-5y-14=0

=>(d1) và (d2) vuông góc

b: Tọa độ A là:

y=0 và 3x-1=0

=>x=1/3 và y=0

Tọa độ B là:

y=0 và 3-x=0

=>x=3 và y=0

Tọa độ C là:

3x-1=-x+3 và y=3x-1

=>x=1 và y=2

c: tan a=3

nên a=71 độ