K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Ta có: \(\Delta ABM\)

=> AB + BM > AD ( BĐT tam giác) (1)

Ta có :\(\Delta AMC\)

=> AC + CM > AD ( BĐT tam giác) (2)

Từ 1;2 => AB + BM + AC + CM > 2AD

=> AB + AC +BC > 2AD

=> \(AB + AC + BC \over 2 \)> AD (*)

Ta có: \(\Delta ABM\)

=> AB - BM < AD ( hệ quả BĐT tam giác) (3)

Ta có :\(\Delta AMC\)

=> AC - CM < AD ( hệ quả BĐT tam giác) (4)

Từ 3;4 => AB - BM + AC - CM < 2AD

=> AB + AC - BC < 2AD

=> \(AB + AC - BC \over 2 \)< AD (**)

Từ *;** => \(AB + AC - BC \over 2\) < AD < \(AB + AC + BC \over 2 \)

17 tháng 3 2018

xét tam giác ABM có:

AB+BM>AD                      (1)

xét tam giác AMB có:

AC+CM>AD                      (2)

từ (1) và (2) ta có: AB+BM+AC+CM>2AD

=>AB+AC+BC=2AD

\(\Rightarrow\frac{AB+AC+BC}{2}>AD.\)

chứng minh gần tương tự ta được \(\frac{AB+AC-BC}{2}< AD.\)

suy ra đpcm

21 tháng 5 2019

a. Theo định lí Pitago:

Ta có: AB2 + AC2 = BC2

           42    + AC2 = 52

           16    + AC2 = 25

                      AC2 = 25 - 16

                      AC2 = 9

                       AC2 = 33

              =>       AC   = 3 (cm)

21 tháng 5 2019

A B C D E

18 tháng 4 2019

1a\(\left(-\frac{3}{4}\right)^4\cdot\left(-\frac{4}{3}\right)^2+\frac{7}{16}\)

\(=\left(-\frac{3}{4}\right)^2+\frac{7}{16}\)

\(=\frac{9}{16}+\frac{7}{16}\)

=1

18 tháng 4 2019

chị giúp em hai bài cuối đi

12 tháng 3 2018

A B C M D

Trên tia đối của MA lấy điểm D sao cho MA = MD

Xét \(\Delta ABM\) và \(\Delta DCM\) có:

\(BM=CM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

\(MA=MD\) (cách vẽ)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

\(\Rightarrow AB=CD\)(2 cạnh tương ứng)

Xét \(\Delta ACD\) có: \(AD< AC+CD\)

\(\Rightarrow2AM< AC+AB\)

\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)

Xét \(\Delta MAB\)có: \(AM>AB-BM\)

Xét \(\Delta MAC\)có: \(AM>AC-MC\)

\(\Rightarrow AM+AM>AB-BM+AC-MC\)

\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)

\(\Rightarrow2AM>AB+AC-BC\)

\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)

Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)