Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(6;-8\right)=2\left(3;-4\right)\)
Gọi N là trung điểm AB \(\Rightarrow N\left(1;-1\right)\)
Phương trình trung trực d' của AB:
\(3\left(x-1\right)-4\left(y+1\right)=0\Leftrightarrow3x-4y-7=0\)
\(\Delta ABC\) cân tại M \(\Rightarrow\) M nằm trên trung trực d' của AB
Thay tọa độ K vào pt d' thấy thỏa mãn \(\Rightarrow K\in d'\)
\(\left\{{}\begin{matrix}M\in d'\\K\in d'\end{matrix}\right.\) \(\Rightarrow\) d' trùng \(d_2\) (hai đường thẳng cùng chứa 2 điểm pb)
\(\Rightarrow\) Phương trình \(d_2\) là \(3x-4y-7=0\)
Thật kì diệu, chẳng cần đến dữ kiện pt d luôn :D:D:D:D
a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).
Phương trình chính tăc của (E) có dạng
\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)
\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)
Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)
Thay vào (1) ta được :
\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)
\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)
Suy ra \({a^2} = 4\)
Ta có a = 2 ; b = 1.
Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)
(0 ; -1) và (0 ; 1).
b) Phương trình chính tắc của (E) là :
\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).
Phương trình tung độ giao điểm của \(\Delta\) và \((E)\) là :
\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)
Suy ra tọa độ của C và D là :
\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)
Vậy CD = 1.
\(B\in d\)=> B ( 7-2m; -3 +m)
\(B'\in d'\)=> B' ( -5 + 4t ; -7 + 3t )
Mà A; B;B' \(\in\)\(\Delta\) và AB = AB'
=> \(\overrightarrow{AB}=\overrightarrow{B'A}\)
=> \(\hept{\begin{cases}7-2m-2=2+5-4t\\-3+m+3=-3+7-3t\end{cases}}\)<=> m = 1; t = 1
=> B(5 ; -2); C( -1; - 4)
=> Viết phương trình d :....
a)
y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2
y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3
Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\) \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).
Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).
b)
I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).
y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)
Vậy: \(y=-x^2-4x-3\).
c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).
Lời giải:
Gọi tâm đường tròn là $I(a,3-2a)$
Kẻ $IH\perp MN$ thì $H$ là trung điểm của $MN$
$IH=d(I,MN)=\frac{|3a+4(3-2a)+3|}{\sqrt{3^2+4^2}}=|3-a|$
$MH=\frac{MN}{2}=\sqrt{3}$
$R^2=IM^2=IH^2+MH^2=(3-a)^2+3(1)$
Mặt khác, $A\in (C)$ nên $R^2=IA^2=(a-2)^2+(2-2a)^2(2)$
Từ $(1);(2)\Rightarrow (3-a)^2+3=(a-2)^2+(2-2a)^2$
$\Leftrightarrow 2a^2-3a-2=0$
$\Rightarrow a=2$ hoặc $a=-\frac{1}{2}$
$\Rightarrow I(2,-1)$ với $R^2=4$ hoặc $I(\frac{-1}{2}; 4)$ với $R^2=\frac{61}{4}$
Vậy PTĐTr là:
$(x-2)^2+(y+1)^2=4$ hoặc $(x+\frac{1}{2})^2+(y-4)^2=\frac{61}{4}$
Do A thuộc đường thẳng Δ
⇒ A (x; 3x + 1) với x là hoành độ, x > 0
MA = \(2\sqrt{2}\)
⇒ (x - 2)2 + (3x + 1 - 3)2 = 8
⇒ x2 - 4x + 4 + 9x2 - 12x + 4 = 8
⇒ 10x2 - 16x = 0
Mà x > 0
⇒ x = \(\dfrac{8}{5}\) ⇒ M\(\left(\dfrac{8}{5};\dfrac{29}{5}\right)\)
Tại sao là 3x+1 ạ