K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BHCD có 

CH//BD

BH//CD

Do đó: BHCD là hình bình hành

a: Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó: BHCD là hình bình hành

23 tháng 11 2021

Cho hình thoi 𝐴𝐵𝐶𝐷 (𝐴መ > 90௢). Gọi 𝐸 là hình chiếu vuông góc của 𝐴 trên 𝐵𝐶, 𝐹 là hình
chiếu vuông góc của 𝐶 trên 𝐴𝐷.
a) Tứ giác 𝐴𝐸𝐶𝐹 là hình gì? Vì sao?
b) 𝐵𝐷 cắt 𝐴𝐸 tại 𝐻, cắt 𝐶𝐹 tại 𝐾. Chứng minh rằng 𝐴𝐾 = 𝐶𝐻.
c) Gọi 𝐼 là giao điểm của 𝐴𝐾 và 𝐶𝐷, 𝐽 là giao điểm của 𝐶𝐻 và 𝐴𝐵. Chứng minh rằng 𝐸𝐼 ⊥ 𝐸𝐽
 

 

23 tháng 11 2021

Help

 

24 tháng 4 2023

loading...  

a) Do AD là đường phân giác của ∠BAC

⇒ BD/CD = AB/AC = 9/12 = 3/4

b) Xét hai tam giác vuông: ∆ABC và ∆EDC có:

∠C chung

⇒ ∆ABC ∽ ∆EDC (g-g)

a: BD/CD=AB/AC=3/4

b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

a: Ta có: \(A=-x^2+2x+5\)

\(=-\left(x^2-2x-5\right)\)

\(=-\left(x^2-2x+1-6\right)\)

\(=-\left(x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=-x^2-8x+10\)

\(=-\left(x^2+8x-10\right)\)

\(=-\left(x^2+8x+16-26\right)\)

\(=-\left(x+4\right)^2+26\le26\forall x\)

Dấu '=' xảy ra khi x=-4

c: Ta có: \(C=-3x^2+12x+8\)

\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)

\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)

\(=-3\left(x-2\right)^2+20\le20\forall x\)

Dấu '=' xảy ra khi x=2

d: Ta có: \(D=-5x^2+9x-3\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)

e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)

\(=4x+24-x^2-6x\)

\(=-x^2-2x+24\)

\(=-\left(x^2+2x-24\right)\)

\(=-\left(x^2+2x+1-25\right)\)

\(=-\left(x+1\right)^2+25\le25\forall x\)

Dấu '=' xảy ra khi x=-1

f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)

\(=8x-6x^2+20-15x\)

\(=-6x^2-7x+20\)

\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)

\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)

\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)