Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Chọn C
- Do công sai và số hạng đầu là d = 1, u 1 = 1 nên đây là tổng của n số tự nhiên đầu tiên là:
Chọn B.
- Ta có: u 1 = S 1 = 3 .
- Vậy M = u 1 + d = 3 - 2 = 1 .
Chọn D
Phương pháp
Tổng của n số hạng đầu của CSC có số hạng đầu là u1 và công sai d:
Cách giải:
Ta có: S 14 = n 2 u 1 + ( n - 1 ) d 2 = 280
Phương pháp:
S n = n u 1 + n ( n - 1 ) d 2
Cách giải:
Ta có:
⇒ S 20 = n u 1 + n ( n - 1 ) 2 d = - 320
Chọn C
\(S_n=nu_1+\dfrac{n\left(n-1\right)}{2}d=n\left(n.\dfrac{d}{2}+u_1-\dfrac{d}{2}\right)=n\left(n+4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{d}{2}=1\\u_1-\dfrac{d}{2}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=5\\d=1\end{matrix}\right.\)
\(u_n=5+1.\left(n-1\right)=n+4\)
Đáp án A