Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
a) Ta đặt \(P\left(x\right)=x^2+x+1\)
\(P\left(x\right)=x^2+x-20+21\)
\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)
Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\) nên \(\left(x+5\right)\left(x-4\right)⋮3\).
Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)
Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)
b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)
Nếu \(y=0\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)
a) Ta đặt
�
(
�
)
=
�
2
+
�
+
1
P(x)=x
2
+x+1
�
(
�
)
=
�
2
+
�
−
20
+
21
P(x)=x
2
+x−20+21
�
(
�
)
=
(
�
+
5
)
(
�
−
4
)
+
21
P(x)=(x+5)(x−4)+21
Giả sử tồn tại số tự nhiên
�
x mà
�
(
�
)
⋮
9
P(x)⋮9
⇒
�
(
�
)
⋮
3
⇒P(x)⋮3. Do
21
⋮
3
21⋮3 nên
(
�
+
5
)
(
�
−
4
)
⋮
3
(x+5)(x−4)⋮3.
Mà 3 là số nguyên tố nên suy ra
[
�
+
5
⋮
3
�
−
4
⋮
3
x+5⋮3
x−4⋮3
Nếu
�
+
5
⋮
3
x+5⋮3 thì suy ra
�
−
4
=
(
�
+
5
)
−
9
⋮
3
x−4=(x+5)−9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Nếu
�
−
4
⋮
3
x−4⋮3 thì suy ra
�
+
5
=
(
�
−
4
)
+
9
⋮
3
x+5=(x−4)+9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9
b) Vì x^2+x+1⋮̸9 nên
�
≤
1
⇒
�
∈
{
0
;
1
}
y≤1⇒y∈{0;1}
Nếu
�
=
0
⇒
�
2
+
�
+
1
=
1
y=0⇒x
2
+x+1=1
⇔
�
(
�
+
1
)
=
0
⇔x(x+1)=0
⇔
[
�
=
0
(
�
ℎ
ậ
�
)
�
=
−
1
(
�
�
ạ
�
)
⇔[
x=0(nhận)
x=−1(loại)
Nếu
�
=
1
y=1
⇒
�
2
+
�
+
1
=
3
⇒x
2
+x+1=3
⇔
�
2
+
�
−
2
=
0
⇔x
2
+x−2=0
⇔
(
�
−
1
)
(
�
+
2
)
=
0
⇔(x−1)(x+2)=0
⇔
[
�
=
1
(
�
ℎ
ậ
�
)
�
=
−
2
(
�
�
ạ
�
)
⇔[
x=1(nhận)
x=−2(loại)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)
1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)
\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)
Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)
\(\Rightarrow2abc⋮4\)
Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)
\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)
Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)
a) Giả sử \(x^2+x⋮̸9\)
\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)
\(\Rightarrow x^2+x+1⋮̸9\)
\(\Rightarrow dpcm\)
b) \(x^2+x+1=3^y\)
\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)
Ta thấy \(x\left(x+1\right)\) là số chẵn
\(\left(1\right)\Rightarrow3^y-1\) là số chẵn
\(\Rightarrow y\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài
Đính chính
a) Giả sử \(x^2+x\) \(⋮̸9\)
\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)
\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)
\(\Rightarrow x^2+x+1\) \(⋮̸9\)
b) \(x^2+x+1=3^y\)
\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)
mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn
\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)
Ta có : a + 4b chia hết cho 13
Suy ra : 10(a + 4b) chia hết cho 13
<=> 10a + 40b chia hết cho 13
<=> [(10a + b) + 39b] chia hết cho 13
Mà b là số tự nhiên và 39 chia ết cho 13 nên 39b chia hết cho 13
Vậy 10a + b chia hết cho 13 (đpcm)
Vì a + 4b chia hết cho 13 nên 10(a+4b) chia hết cho 13
10a+40b chia hết cho 13
(10a+b)+39b chia hết cho 13
Mà 39 chia hết cho 13 nên 39b chia hết cho 13
=> 10a+b chia hết cho 13
Vây: nếu a+4b chia hết cho 13 thì 10a+bchia hết cho 13
+) Ta có: 1 số chia 5 có số dư là: 0; 1; 2; 3; 4
=> 1 số chính phương chia 5 sẽ có số dư là: 0; 1; 4
=> Lũy thừa bậc 4 của 1 số tự nhiên chia 5 sẽ có số dư là: 0; 1
=> các số \(a^4;b^4;c^4\) chia cho 5 sẽ có bộ 3 số dư là: 0; 0; 0 hoặc 1;1;1 hoặc 1; 0; 0 hoặc 1; 1; 0
Nếu \(a^4;b^4;c^4\)chia cho 5 sẽ có bộ 3 số dư là: 1;1;1 hoặc 1; 1; 0
=> \(a^4+b^4+c^4\)chia cho 5 có số dư là 3 hoặc 2 vô lí vì \(a^4+b^4+c^4\) là một số chinh phương chia 5 dư 0; 1; 4
Do đó tồn tại 2 số trong 3 số chia cho 5 dư 0 hay chia hết cho 5
=> Giả sử đó là \(a^4⋮5\) và \(b^4⋮5\) => \(a,b⋮5\)=> \(abc⋮25\)(1)
+) Xét các trường hợp chẵn lẻ: nhận xét: Số chính phương chẵn chia 8 dư 0 hoặc 4; Số chính phương lẻ chia 8 dư 1
=> Lũy thừa bậc 4 của 1 số tự nhiên chẵn chia hết cho 8; Lũy thừa bậc 4 của 1 số tự nhiên lẻ chia 8 dư 1
Nếu a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 3 loại
Nếu 2 trong 3 số a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 2 loại
=> Tồn tại 2 trong 3 số a, b, c là số chẵn
=> \(abc⋮4\)(2)
từ (1); (2) và (4;25) = 1; 4.25=100
=> \(abc⋮100\)
Bạn tham khảo nhé !
Ta thấy : x+4y ⋮13
=> 10.(x + 4y ) ⋮13
=> 10x + 40y ⋮ 13
=> 10x + y + 39y ⋮ 13
mà 39y chia hết cho 13
=>10x+y ⋮ 13
x+4y13
=>10.(x+4y)13
10x+40y13
10x+y+39y13
mà 39y chia hết cho 13
=>10x+y13