K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Ta có : a + 4b chia hết cho 13

Suy ra : 10(a + 4b) chia hết cho 13

<=> 10a + 40b chia hết cho 13

<=> [(10a + b) + 39b] chia hết cho 13

Mà b là số tự nhiên và 39 chia ết cho 13 nên 39b chia hết cho 13

Vậy 10a + b chia hết cho 13 (đpcm)

31 tháng 3 2017

Vì a + 4b chia hết cho 13 nên 10(a+4b) chia hết cho 13

                                            10a+40b chia hết cho 13

                                             (10a+b)+39b chia hết cho 13

Mà 39 chia hết cho 13 nên 39b chia hết cho 13

=> 10a+b chia hết cho 13

Vây: nếu a+4b chia hết cho 13 thì 10a+bchia hết cho 13

22 tháng 1 2017

Có a+4b chia hết cho 13

=> a+13a+4b+13b chia hết cho 13

=> 14a+17b chi hết cho 13

=> 10a+4a+b+16b chia hết cho 13

=> (10a+b)+(4a+16b) chia hết cho 13

=> (10a+b)+4(a+4b) chia hết cho 13

Mà a+4b chia hết cho 13 => 4(a+4b) chia hết cho 13 

=> Để (10a+b)+4(a+4b) chia hết cho 13 thì 10a+b chia hết cho 13 (đpcm)

k cho mik nha

1 tháng 2 2018

a) Gọi a+4b là c, 10a+b là d.Ta có:

a+4b= c

10a+b = d

=> 3a+ 12b =3c

10a + b = d

=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13

Mà:  3c+d chia hết cho 13

        3c chia hết cho 13

=> d chia hết cho 13 hay 10a+ b chia hết cho 13

26 tháng 6 2021

Bạn tham khảo nhé !

Ta thấy : x+4y 13

=> 10.(x + 4y ) 13

=> 10x + 40y ⋮ 13

=> 10x + y + 39y ⋮ 13

mà 39y chia hết cho 13

=>10x+y ⋮ 13

30 tháng 3 2023

x+4y13

=>10.(x+4y)13

10x+40y13

10x+y+39y13

mà 39y chia hết cho 13

=>10x+y13

10 tháng 11 2017

Giải : Đặt a + 4b = x ; 10a + b = y . Ta biết x \(⋮\)13 cần chứng minh y \(⋮\)13

• Xét biểu thức :

10x - y = 10( a + 4b ) - ( 10a + b ) = 10a + 40b - 10a - b = 39b

Như vậy 10x - y \(⋮\)13

Vì x \(⋮\)13 nên 10x \(⋮\)13 . Suy ra y \(⋮\)13 .

15 tháng 3 2017

Giải:

\(a+4b⋮13\)

\(\Rightarrow10\left(a+4b\right)⋮13\)

Ta có:

\(10\left(a+4b\right)=10a+40b=10a+b+39b\)

\(39b=3.13.b⋮13\)

\(\Rightarrow10a+b⋮13\)

Vậy nếu \(a+4b⋮13\Rightarrow10a+b⋮13\) (Đpcm)

16 tháng 3 2017

Mình nói ngắn gọn thôi nhé!!!!!!!!!!

Kết quả là: 10a+b:13

vui!!!!!!!!!!!

17 tháng 11 2019

Bài 1: 5a+7b chia hết cho 13

=> 35a+49b chia hết cho 13

=> 5(7a+2b)+39b chia hết cho 13

Do 39b chia hết cho 13

=> 5(7a+2b) chia hết cho 13

Mà 5 vs 13 là 2 số nguyên tố cùng nhau

=> 7a+2b chia hết cho 13. (đpcm)

Bài 2:

Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)

Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)

Nếu n>=5 thì n! sẽ có tận cùng là 0 

=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3

Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)

=> Với mọi n>=5 đều loại

vậy n=3. 

Bài 3:

Do 26^3 có 2 chữ số tận cùng là 76

26^5 có 2 chữ số tận cùng là 76

26^7 có 2 chữ sốtận cùng là 76

Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76

Vậy 26^2019 có 2 chữ số tận cùng là 76.

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

31 tháng 12 2015

bạn lấy (10a+b)-(a+4b)=>10a+b-a-4b là ra .chỉ cần cm la đc

 

31 tháng 12 2015

chtt