K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

26 tháng 10 2019

\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2+\frac{1}{a^2}}=2\\ \)(do Bđt cosi)=> \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\\ \)

Dấu "=" xảy ra <=> a=b=c=1

=>B=3

26 tháng 10 2019

Bất đẳng thức cosi mình chưa học

26 tháng 12 2020

Xét \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

\(=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)

\(=a.\left(\frac{a}{b+c}+1-1\right)+b.\left(\frac{b}{c+a}+1-1\right)+c.\left(\frac{c}{a+b}+1-1\right)\)

\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)

\(=\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)

\(=\left(a+b+c\right).2020-\left(a+b+c\right)\)

\(\Rightarrow P=\frac{A}{a+b+c}=\frac{\left(a+b+c\right).2019}{a+b+c}=2019\)

Vậy...

24 tháng 3 2020

\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)

\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)

2 tháng 1 2020

\(\frac{2}{ab}-9=\frac{1}{c^2}\)\(\Rightarrow\frac{2}{ab}-\frac{1}{c^2}=9\)

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}-\frac{1}{c^2}\right)=3^2-9\)

\(\Rightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2.\frac{1}{a}.\frac{1}{b}+2.\frac{1}{b}.\frac{1}{c}+2.\frac{1}{c}.\frac{1}{a}-\frac{2}{ab}+\frac{1}{c^2}=0\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}-\frac{2}{ab}+\frac{1}{c^2}=0\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ac}+\frac{1}{c^2}=0\)

\(\Rightarrow\left(\frac{1}{a^2}+\frac{2}{ac}+\frac{1}{c^2}\right)+\left(\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}\right)=0\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{c}=0\\\frac{1}{b}+\frac{1}{c}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{-1}{c}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}+\frac{-1}{c}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}=3\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=3\)\(\Rightarrow c=-\frac{1}{3}\)\(a=b=\frac{1}{3}\)

Lại có: \(P=\left(a+3b+c\right)^{2020}=\left(\frac{1}{3}+3.\frac{1}{3}+\frac{-1}{3}\right)^{2020}=1^{2020}=1\)

25 tháng 8 2020

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)

 \(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)

Khi đó  Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)

= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020

= 1 + 1 + 1 = 3

Vậy P = 3