Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Do $a\geq 4, b\geq 5, c\geq 6$
$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$
$\Rightarrow c\leq 7$
$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$
$\Rightarrow a< 9$
$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$
$\Rightarrow b< 8$
Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$
Suy ra:
$(a-4)(a-9)\leq 0$
$(b-5)(b-8)\leq 0$
$(c-6)(c-7)\leq 0$
$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$
$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$
$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$
Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$
\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow-3\le a+b+c\le3\)
\(T_{max}=3\) khi \(a=b=c=1\)
\(T_{min}=-3\) khi \(a=b=c=-1\)
Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)
\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)
\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)
\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)
Cộng vế:
\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)
\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)
Ta có thể giải bài toán này bằng cách sử dụng phương pháp điều chỉnh biểu thức P để biểu thức này có thể được phân tích thành tổng của các biểu thức có dạng a(x-y)+b(y-z)+c(z-x), trong đó x,y,z là các số thực không âm. Khi đó, ta có:
P = ab + bc - ca = a(b-c) + b(c-a) + c(a-b) = a(-c+b) + b(c-a) + c(-b+a) = a(x-y) + b(y-z) + c(z-x), với x = -c+b, y = c-a và z = -b+a
Do đó, để tìm giá trị lớn nhất của P, ta cần tìm các giá trị lớn nhất của x, y, z. Ta có:
x = -c+b ≤ b, vì c ≥ 0 y = c-a ≤ c ≤ 2022, vì a+b+c = 2022 z = -b+a ≤ a, vì b ≥ 0
Vậy giá trị lớn nhất của P là:
P_max = ab + bc - ca ≤ b(2022-a) + 2022a = 2022b
Tương tự, để tìm giá trị nhỏ nhất của P, ta cần tìm các giá trị nhỏ nhất của x, y, z. Ta có:
x = -c+b ≥ -2022, vì b ≤ 2022 y = c-a ≥ 0, vì c ≤ 2022 và a ≥ 0 z = -b+a ≥ -2022, vì a ≤ 2022
Vậy giá trị nhỏ nhất của P là:
P_min = ab + bc - ca ≥ (-2022)a + 0b + (-2022)c = -2022(a+c)
Do đó, giá trị lớn nhất của P là 2022b và giá trị nhỏ nhất của P là -2022(a+c).
Để M=a+b+c nhỏ nhất thì a,b,c phải nhỏ nhất
mà a\(\ge\)5 , b\(\ge\)6 , c\(\ge\)7
và a\(^2\)+b\(^2\)+c\(^2\)=125
\(\Rightarrow\)a,b,c lần lượt là 5 ,6,8 (tmđk)
GTNN của M là 19
Với mọi số thực ta luôn có:
`(a-b)^2+(b-c)^2+(c-a)^2>=0`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`
`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`
`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`
`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`
`<=>a^2+b^2+c^2>=4/3`
Dấu "=" xảy ra khi `a=b=c=2/3`
~Quang Anh Vũ~