Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(ab=c\left(a-b\right)\)
<=> \(c^2=ac-bc-ab+c^2\)
<=> \(c^2=a\left(c-b\right)+c\left(c-b\right)\)
<=> \(c^2=\left(c-b\right)\left(a+c\right)\)
Đặt: ( c - b ; a + c ) = d
=> \(c^2⋮d^2\)=> \(c⋮d\)(1)
và \(\hept{\begin{cases}c-b⋮d\\a+c⋮d\end{cases}}\)(2)
Từ (1); (2) => \(b;a⋮d\)(3)
Từ (1); (3) và (a; b ; c ) =1
=> d = 1 hay c - b; a + c nguyên tố cùng nhau
Mà \(\left(c-b\right)\left(a+c\right)=c^2\)là số chính phương
=> c - b ; a + c là 2 số chính phương
Khi đó tồn tại số nguyên dương u, v sao cho: \(c-b=u^2;a+c=v^2\)khi đó: \(c^2=u^2.v^2\)<=> c = uv ( vì c, u,, v nguyên dương )
Ta có: \(a-b=\left(a+c\right)+\left(c-b\right)-2c\)
\(=u^2+v^2-2uv=\left(u-v\right)^2\) là số chính phương.
Bài 1:
a)
Giả sử a,b đều chia 3 dư 1
=> ab: 3 dư(1.1=1)(Lưu ý: Nếu 2 số chia cùng 1 số đều dư thì Tích 2 số đó chia cho số đó thì dư sẽ là tích của 2 dư 2 số đó)
=> ab -1 sẽ chia hết cho 3 (Cùng số dư khi trừ thì sẽ chia hết cho số đó)
Giả sử a,b đều chia 3 dư 2
=> ab : 3 (dư 2 x 2 = 4) => ab : 3 dư 1( Vì số dư không bao giờ lớn hơn số chia)
=> ab -1 sẽ chia hết cho 3
Vậy thì nếu a,b chia 3 cùng một số dư thì ab - 1 chia hết cho 3
b)
Ta nhận thấy số số 1 mà là số chẵn thì sẽ chia hết cho 11
Ví dụ: 11 : 11 = 1
1111 : 11 = 101
111111 : 11 = 10101
,.......
Số số 1 là 2002( là số chằn)
=> Số a chia hết cho 11 => a là hợp số
Bài 2:
Ta có: ab - ba = 10a + b - 10b - a = 9a - 9b =9 x (a - b)
Ta thấy rằng là số sau khi trừ luôn chia hết cho 9 => Số đó là hợp số
=> Không có số nguyên tố ab thỏa mãn điều kiện trên
Giả sử a,b,c,d khác nhau ta có
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)
=> điều giả sử là sai => ĐPCM
Giả sử a,b,c,d khác nhau, thì ta sẽ có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)
= > điều giả sử sai = > ĐPCM
Ta có 1+a2 =ab + ac + bc + a2 = (a+b) (a+c)
TT: 1+b2 = (a+b )(b+c)
1+c2=(a+c) (b+c)
⇒ P = (a+b)2(b+c)2(a+c)2
⇒ P là số chính phương (vì a,b,c∈Z)