Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
nè, mi chơi ki kiểu mất dạy nha.tao bái mi làm sư phụ
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Đặt (a;c)=q thì a=qa1;c=qc1 (Vs (a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1
Dẫn đến d⋮a1 đặt d=a1d1 thay vào đc:
b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)
là hợp số (QED)
Ta có :a+b=c+d
\(\Rightarrow\) a=c+d-b
Thay vào ab+1=cd
\(\Rightarrow\) (c+d-b)*b+1=cd
\(\Leftrightarrow\)cb+db-cd+1-b2=0
\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0
\(\Leftrightarrow\) (b-d)(c-b)=-1
Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
Mà (b-d)(c-b)=-1 nên có 2 trường hợp
TH1: b-d=-1 và c-b=1
\(\Leftrightarrow\) d=b+1 và c=b+1
\(\Rightarrow\) c=d (1)
TH2: b-d=1 và c-b=-1
\(\Leftrightarrow\) d=b-1 và c=b-1
\(\Rightarrow\) c=d (2)
Vậy từ (1) và (2) ta có c=d.
a) ta có
abcd=120 mà abc=-30 nên -30.d=120 suy ra d=-4
abc=-30 mà ab=-6 nên -6.c=-30 suy ra c=5
bc=-15 mà c=5 suy ra b=-3
ab=-6 mà b=-3 suy ra a.(-3) = -6 suy ra a=2
b) a+b=-1, a+c=6, b+c=1 nên 2a + 2b+2c= -1 + 6 + 1 = 6
suy ra a+b+c = 3 mà a+b= -1 suy ra c=4
suy ra a=6-4=2; b=1-4 = -3
c) a+b+c=-6, b+c+d = -9, c+d+a = -8, d+a+b = -7 nên 3a+3b+3c+3d = -30
suy ra a+b+c+d= -10
mà a+b+c = -6
suy ra d=-4
nên b+c=5, a+c=-4, a+b = -3 suy ra 2a+2b+2c = -2 suy ra a+b+c=-1
suy ra a=-6, b= 3, c= 2
a, d=-4 c=5 b=-3 a=2
b, c=4 a=2 b=-3
c, d=-4 a=-1 c=-3 b=-2
Ta có a + b = c + d => a = c + d - b
thay vào ab + 1 = cd
=> ( c + d - b ) . b + 1 = cd
<=> cb + db - cd + 1 - b2 = 0
<=> b ( c - b ) - d ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) = -1
Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :
1 : b - d = -1 và c - b = 1
<=> d = b + 1 và c = b + 1
=> c = d
2 : b - d = 1 và c - b = -1
<=> d = b - 1 và c = b - 1
=> c = d
Vậy từ 2 trường hợp trên ta có c = d
Ta có a + b = c + d => a = c + d - b
thay vào ab + 1 = cd
=> ( c + d - b ) . b + 1 = cd
<=> cb + db - cd + 1 - b2 = 0
<=> b ( c - b ) - d ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) = -1
Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :
1 : b - d = -1 và c - b = 1
<=> d = b + 1 và c = b + 1
=> c = d
2 : b - d = 1 và c - b = -1
<=> d = b - 1 và c = b - 1
=> c = d
Vậy từ 2 trường hợp trên ta có c = d