K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

P = \(\frac{a^3}{\left(a-b\right)\left(a-c\right)}\)\(+\)\(\frac{b^3}{\left(b-a\right)\left(b-c\right)}\)\(+\)\(\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)

   = \(\frac{a^3\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(+\)\(\frac{b^3\left(c-a\right)}{\left(b-a\right)\left(b-c\right)\left(c-a\right)}\)\(+\)\(\frac{c^3\left(a-b\right)}{\left(c-a\right)\left(c-b\right)\left(a-b\right)}\)

  = \(\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

Tử số = a3(b - c) + b3(c - a) + c3(a - b)

          = a3(b - c) - b3[(b - c) + (a - b)] + c3(a - b)

          = a3(b - c) - b3(b - c) - b3(a - b) + c3(a - b)

          = (b - c)(a3 - b3) - (a - b)(b3 - c3)

         = (b - c)(a - b)(a2 + ab + b2) - (a - b)(b - c)(b2 + bc + c2)

        = (a - b)(b - c)(a2 + ab + b2 - b2 - bc - c2)

       = (a - b)(b - c)(a2 + ab - bc - c2)

       = (a - b)(b - c)(a - c)(a + b + c)

Vậy  P = \(\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)= a + b + c

Vì a, b , c là các số nguyên đôi một khác nhau nên a + b + c là số nguyên

hay P có giá trị là 1 số nguyên

19 tháng 12 2020

Bài này mình làm một lần ở trường rồi nhưng không có điện thoại chụp được:((

Ta có: \(\dfrac{a^3}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)+b^3\left(a-c\right)-c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{a^3\left(c-b\right)+b^3a-b^3c-c^3a+c^3b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c^3-b^3\right)+bc\left(c^2-b^2\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c-b\right)\left(a^2+bc+b^2\right)+bc\left(c-b\right)\left(c+b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left(a^3-ac^2-abc-ab^2+bc^2+b^2c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}=\dfrac{\left(c-b\right)\left[a\left(a^2-b^2\right)-c^2\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left[a\left(a-b\right)\left(a+b\right)-c\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a^2+ab-c-bc\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)

\(\dfrac{\left(c-b\right)\left(a-b\right)\left[a^2-c^2+ab-bc\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)\(=a+b+c\)

Vì a, b, c là các số nguyên

=> a+b+c là các số nguyên

=> Đpcm.

Đấy mình làm chi tiết tiền tiệt lắm luôn, không hiểu thì mình chịu rồi, trời lạnh mà đánh máy nhiều thế này buốt tay lắm luôn:vv

4 tháng 9 2017

Ta có:

\(\dfrac{b-c}{1\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\dfrac{c-b}{1\left(a-b\right)\left(c-a\right)}+\dfrac{a-c}{\left(b-c\right)\left(a-b\right)}+\dfrac{b-a}{\left(c-a\right)\left(b-c\right)}\)

Quy đồng rút gọn ta được

\(=\dfrac{2\left(ab+bc+ca-a^2-b^2-c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\dfrac{2\left[\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)

PS: Hôm qua đi chơi nên nay mới giải nhé.

24 tháng 7 2021

Ta có a - b + b - c + c - a = 0 \(⋮30\)

=> (a - b) + (b - c) + (c - a) \(⋮\)30 (0) 

Xét hiệu (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)] 

= [(a - b)5 - (a - b)] + [(b - c)5 - (b - c)] + [(c - a)5 - (c - a)]

Nhận thấy : (a - b)5 - (a - b) = (a - b)[(a - b)4 - 1]

= (a - b)[(a - b)2 - 1][(a - b)2 + 1] 

= (a - b)[(a - b)2 - 1][(a - b)2 - 4 + 5]

=  (a - b)[(a - b)2 - 1][(a - b)2 - 4] +  5(a - b)[(a - b)2 - 1]  

= (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1)

Nhận thấy (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1) \(⋮\)30 (tích 5 số nguyên liên tiếp) (1)

Lại có (a - b - 1)(a - b)(a - b + 1) \(⋮\)6

=> 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 (2) 

Từ (1) và (2) =>  (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 

=> (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)]  \(⋮\)30 (4) 

Từ (0) ; (4) => (a - b)5 + (b - c)5 + (c - a)5 \(⋮\)30 (đpcm) 

5 tháng 9 2017

đặt x=a-b;y=b-c;z=c-a

ta có x+y+z=0

nên ta có ĐPCM 

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

<=> \(2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)

<=> \(\frac{z}{xyz}+\frac{y}{xyz}+\frac{x}{xyz}=0\)

<=> \(\frac{x+y+z}{xyz}=0\) (luôn đúng )

2 tháng 10 2017

từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)

Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)

Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)

2 tháng 10 2017

tôi lớp 7 mà