Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử abcd0
Ta có S =|a-b|+|b-c|+|c-d|+|a-c|+|a-d|+|b-d|
=> S = a – b + b – c + c – d + a – c + a – d + b – d
=> S = 3a + b – (c + 3d)
Mà c + 3d 0 => S3a + b
Mặt khác a + b + c + d = 1 => a 1.
Suy ra S = 3a + b = 2a + a + b 2.1 + 1 = 3
c+3d=0
Dấu bằng xảy ra khi a+b+c+d=1
} <=>{a=1b=c=d=0
a=1
Vậy S lớn nhất bằng 3 khi trong bốn số a, b, c, d có một số bằng 1 còn ba số bằng
Không mất tính tổng quát, ta giả sử \(a\le b\le c\le d< 1\)
Xét tổng \(S=\left|d-c\right|+\left|d-b\right|+\left|d-a\right|+\left|c-b\right|+\left|c-a\right|+\left|b-a\right|\)
\(=\left(3d+c\right)-\left(b+3a\right)\)
Do \(b+3a\ge0\Rightarrow S\le3d+c\)
S = 3d + c khi a = b = 0 , khi đó d + c = 1.
Do \(d\le1\Rightarrow S=2d+\left(d+c\right)=2d+1\le2.1+1=3\)
Vậy maxS = 3 khi \(\left(a,b,c,d\right)=\left(1,0,0,0\right)\) và các hoán vị của nó.
Tìm hai số biết tổng là 0,75 và tỉ số cũng là 0,75
Tìm hai số biết tổng của
a)ta có : nếu a= 2/5 thì a=0,4 <=> a+b+c=1 (1)
=> 0,4+b+c=1 => b+c= 0,6 => b=c= 0,3 ( trường hợp b=c) (2)
từ (1) va (2) ta thấy : a\(\ge\)b\(\ge\)c\(\ge\)0 va a+b+c= 1
vậy a có thể là 2/5
b) ta có : nếu a=1/5 thì a= 0,2 . vị 0,2>0,1 => b hoặc c bằng 0,1
nếu b=c thì a+b+c= 0,2+0,1+0,1 = 0,4 \(\ne\) 1
vậy a không thể là 1/5
c) theo đề bài ta có : vì a là giá trị nhỏ nhất nên a=0,4
thay 0,4 vào đề bài ta có : 0,4+0,3+0,3= 1 ( với b=c=3)
vậy a nhỏ nhất bằng 0,4
d) theo đề bài ta có : vì a là giá trị lớn nhất nên a=1
thay 1 vào đề bài ta có : 1+0+0= 1 ( voi b=c=1 )
vậy a lớn nhất bằng 1