K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Ta có : \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)

\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\Leftrightarrow ab+a+b+1\ge9ab\) ( vì \(ab>0\) )

\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) ( vì \(a+b=1\) )

\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\) ( Vì \(a+b=1\) ) \(\Leftrightarrow\left(a-b\right)^2\ge0\left(2\right)\)

BĐT ( 2 ) đúng , mà các phép biến đổi trê tương đương , vây BĐT ( 1 ) được chứng minh . Xảy ra đẳng thức khi và chỉ khi \(a=b\)

12 tháng 4 2019

Ta có \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)       (1)

\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)

\(\Leftrightarrow ab+a+b+1\ge9ab\) (vì ab > 0)

\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) (vì a + b = 1)

\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)   (vì a + b = 1)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)  (2)

Bất đẳng thức (2) đúng, mà các phép biến đổi trên tương đương, vậy bất đẳng thức (1) được chưng minh.

7 tháng 2 2020

1+1/a= 1+ (a+b)/a = 2+b/a

tương tự: 1+1/b= 2+a/b

nhân 2 đa thức với nhau đc : 5+2a/b+2b/a=5+2(a/b+b/a)

áp dụng bđt cô si a/b+b/a >=2     =) 5+2(a/b+b/a)>=9 (dấu = xảy ra khi a-b=1/2)

27 tháng 2 2021

Đặt A = \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

A = \(\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)(Vì a + b = 1)

A = \(\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)

A = \(4+\frac{2a}{b}+\frac{2b}{a}+1\)

A = \(5+2\left(\frac{a}{b}+\frac{b}{a}\right)\)

Vì a, b dương nên áp dụng BĐT Cô - si cho 2 số dương, ta được :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2.1=2\)

\(\Leftrightarrow2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4\)

\(\Leftrightarrow5+2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4+5\)

\(\Leftrightarrow A\ge9\)

Dấu bằng xảy ra \(\Leftrightarrow\)a = b > 0

Vậy \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)với a, b là các số dương và a + b = 1

27 tháng 2 2021

Tớ quên. Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b>0\\a+b=1\end{cases}}\)

\(\Leftrightarrow a=b=\frac{1}{2}\)

13 tháng 9 2018

Ta có \(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\ge\left(a+b+1\right).2ab+\frac{4}{a+b}\)

\(=2.\left(a+b\right)+2+\frac{4}{a+b}\)

\(=a+b+2+a+b+\frac{4}{a+b}\)

\(\ge2.\sqrt{a.b}+2+2.\sqrt{\left(a+b\right).\frac{4}{a+b}}=2+2+2\sqrt{4}\)

\(=2+2+4=8\)

Vậy\(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)với ab=1

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

7 tháng 11 2015

<=>1+a/b+a/c+1+b/a+b/c+1+c/a+c/b>=9<=>a/b+a/c+b/a+b/c+c/a+c/b>=6

Áp dụng BĐT Cauchy cho a/b>0 và b/a>0, ta có a/b+b/a>=2. T.tự ta có a/c+c/a>=2, b/c+c/b>=2. Vậy ta có điều phải chứng minh

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

10 tháng 8 2017

\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)

\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)

\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)

\(\Rightarrow A\ge2+4+2=8\)

"=" khi \(a=b=1\)

13 tháng 7 2019

Mình chịu 

13 tháng 7 2019

\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương ) 

\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

...