Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a,b,c\)có vai trò như nhau nên ta giả sử \(a\ge b\ge c\).
\(3=a+b+c\le a+a+a\Rightarrow a\ge1\).
\(a^2+b^2+c^2=5\Rightarrow a^2\le5\Rightarrow a\in\left\{1,2\right\}\).
Với \(a=2\): \(\hept{\begin{cases}b+c=1\\b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=0\end{cases}}\).
Với \(a=1\Rightarrow b=c=1\)thử vào phương trình \(a^2+b^2+c^2=5\)không thỏa mãn.
Vậy \(A=\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(2^2+2\right)\left(1^2+2\right)\left(0^2+2\right)=36=6^2\)là bình phương của một số nguyên.
Câu 2: Ta có: a , b ,c là các số thực dương ( bài cho )
=> Tồn tại 3 số thực dương x , y, z thỏa mãn : \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{x}{z}\)
=> \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}=\frac{x^3+y^3+z^3}{xyz}\)
<=>\(\frac{x^3+y^3+z^3}{xyz}\ge0=\frac{x^2y+y^2z+z^2x}{xyz}\)( Bước này tách 0 ra cho cùng mẫu )
<=> \(x^3+y^3+z^3\ge x^2y+y^2z+z^2x\)
Áp dụng BĐT TB cộng và TB nhân => \(x^3+y^3+z^3\ge3x^2y\)
Làm 2 BĐT tương tự rồi cộng vào => Đpcm