K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

ta có (1)*2=2x2  -10x+2k

gọi nhiệm pt ( 1) là x1  , pt(2) là x2  

=> (1):2x12  -10x1+2k=0 ;(2):x22-7x2+2k=0      mà :x2=2x1

=> (1):2x12  -10x1+2k=0(3) ;(2):x12-7x1+2k=0 (4)

ta có (3)-(4)=x12-3x=0 => x1(x1-3)=0 =>x1=0 hoặc 3

thay vô (1) ta được :k=0 hoặc 6 

bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ

31 tháng 1 2016

Theo ht Viet :

\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)

Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1) 

(+) tính x1  - x2 

TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)

Rút gọn => x1 - x2 sau đó thay vào (1) 

31 tháng 1 2016

b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM ) 

Xét a khác 0 pt là pt bậc 2 

\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)

LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên 

17 tháng 6 2021

Giả sử 2 pt vô nghiệm. Khi đó \(p_1^2< 4q_1;p_2^2< 4q_2\Rightarrow p_1^2+p_2^2< 4\left(q_1+q_2\right)\le2p_1p_2\Leftrightarrow\left(p_1-p_2\right)^2< 0\). (vô lí)

Do đó tồn tại 1 pt có nghiệm

7 tháng 1 2016

b) Giả sử xo là một nghiệm chung của 2 PT> Khi đó ta có: \(\int^{x_0^2+x_0+a=0}_{x_0^2+ax_0+1=0}\)

Trừ 2 vế của 2 PT ta có: \(x_0\left(1-a\right)+a-1=0\Leftrightarrow\left(x_0-1\right)\left(1-a\right)=0\)<=> xo = 1 hoặc a = 1 (TM vì khi đó 2 PT tương đương)

 xo = 1 => 1+1+a=0 => a=-2

7 tháng 1 2016

a) Dễ thấy rằng 2 PT <=> nhau khi a=1

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Để pt $(1)$ và $(2)$ có nghiệm thì \(\left\{\begin{matrix} \Delta(1)=25-4k\geq 0\\ \Delta(2)=49-8k\geq 0\end{matrix}\right.\Leftrightarrow k\leq \frac{49}{8}\)

Gọi $t$ là nghiệm $(1)$ thì yêu cầu đề bài được xử lý khi $2t$ là nghiệm của $(2)$

\(\Leftrightarrow \left\{\begin{matrix} t^2-5t+k=0\\ (2t)^2-14t+2k=0\end{matrix}\right.\)

\(\Rightarrow 2(t^2-5t)-4t^2+14t=0\)

$\Leftrightarrow t=0$ hoặc $t=2$.

Nếu $t=0$ thì hiển nhiên loại

Nếu $t=2$ thì $k=6$.

Thử lại thấy thỏa mãn.

a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)

\(=m^2-10m+25+4m-24\)

\(=m^2-6m+1=\left(m-3\right)^2-8\)

Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)

\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)

Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)

Ta có: \(x_1x_2=-m+6\)

\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)

\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)

\(\Leftrightarrow6m^2-136m+756=0\)

hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)

b: \(x_1+x_2+x_1x_2-11=0\)

\(\Leftrightarrow m-5-m+6-11=0\)

=>-12=0(vô lý)

5 tháng 4 2016

Xét (delta)=(2m+1)^2-2m

              =4m^2+4m+1-2m

              =4m^2+2m+1(luôn lớn hôn hoặc bằng 0)

Suy ra phương trình đã cho luôn có nghiệm

Theo hệ thức Vi-ét có x1+x2=2(2m+1)

                                 x1.x2=2m

Theo bài ra có x1^2+x2^2=(2căn3)^2

                     (x1^2+x2^2)^2-2x1.x2=12

                     4(2m+1)^2-4m=12

                     16m^2+12m+4=12

                     16m^2+12m-8=0

Suy ra m=\(\frac{-3+\sqrt{41}}{8}\)hoặc m=\(\frac{-3-\sqrt{41}}{8}\)