K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

Gọi 13 số đó lần lượt là a1; a2; a3; ... ; a13    (số 112 là a2,số 215 là a7).               

Ta có: a1+a2+a3=a2+a3+a4⇒a1=a4           (1)

           a2+a3+a4=a3+a4+a5⇒a2=a5           (2)

             .......................

            a10+a11+a12=a11+a12+a13⇒a10=a13   (10)

Từ (1), (2) , ... , (10) ta có  :

a1=a4=a7=a10=a13=215

a2=a5=a8=a11=112

a3=a6=a9=a12

Do a1+a2+a3=428⇒a3=428−215−112=101

Vậy nên a3=a6=a9=a12=101

Ta có dãy số : 

215 112 101 215 112 101 215 112 101 215 112 101 215

Tổng các chữ số của dãy là:

                   (2 + 1 + 5) x 5 + (1 + 1 + 2) x 4 + (1 + 0 + 1) x 4 = 40 + 16 + 8 = 64

Vậy tổng của tất cả các chữ số trong dãy số là 64.

13 tháng 8 2021

em nào địt ko

15 tháng 1 2017

kho qua a co lam nha 

29 tháng 4 2020

Trong quá trính biến đổi giả sử trên bảng có các số a1;a2;...an ta tính đặc số P của bộ này là P=(a1+1)(a2+1)...(an+1)

Ta chứng minh đặc số P không đổi trong quá trình thực hiện phép biến đổi như trên

Thật vậy, giả sử xóa đi 2 số a,b, Khi đó trong tích P mất đi thừa số (a+1)(b+1)

Nhưng đó là ta thay a,b bằng a+b+ab nên trong tích P lại được thêm thừa số a+b+ab+1=(a+1)(b+1)

Vậy P không đổi

Như vậy P ở trạng thái ban đầu bằng P ở trạng thái cuối cùng

Ở bộ số đầu ta có:

\(P=\left(1+1\right)\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)...\left(\frac{1}{2013}+1\right)=2\cdot\frac{3}{2}\cdot\frac{4}{3}....\frac{2014}{203}=2014\)

Giả sử số số cuối cùng còn lại là x thì ở số này ta có: P=x+1

Từ số suy ra x=2013