K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

dsssws

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

a: A(x)=3x^5+x^4+x^2+2x

B(x)=-3x^5-x^4+x^2+x-2

b: M(x)=3x^5+x^4+x^2+2x-3x^5-x^4+x^2+x-2

=2x^2+3x-2

c: M(-2)=8-6-2=0

d: M(3)=2*3^2+3*3-2=18+9-2=25

=>x=3 ko là nghiệm

18 tháng 3 2022

Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến:                        P(x)=x3+2x2+2

P(1)=13+2.12+2=1+2+2=5

P(-1)=(-1)3+2.(-1)2+2=(-1)+2+2=3

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

30 tháng 7 2021

a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)

b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)

\(=x^4+x^2+10\)

c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)

Vậy phương trình ko có nghiệm ( đpcm ) 

30 tháng 7 2021

Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé 

16 tháng 3 2023

`@`\(P\left(x\right)=3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\)

\(P\left(x\right)=\left(3x^5-x^5\right)+x^4+\left(-5x^2-x^2\right)+\left(-2x+x\right)+1\)

\(P\left(x\right)=2x^5+x^4-6x^2-x+1\)

`@`\(Q\left(x\right)=-5-3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)

\(Q\left(x\right)=\left(-3x^5-x^5\right)-3x^4-3x^3+3x^2+\left(2x-2x\right)-5\)

\(Q\left(x\right)=-4x^5-3x^4-3x^3+3x^2-5\)

`@`\(P\left(x\right)+Q\left(x\right)=\left(2x^5+x^4-6x^2-x+1\right)+\left(-4x^5-3x^4-3x^3+3x^2-5\right)\)

                      \(=-2x^5-2x^4-3x^3-3x^2-x-4\)

 

 

a: P(x)=2x^3-x^2+3x+20

Q(x)=-x^3-x^2-3x-4

b: K(x)=2x^3-x^2+3x+20-x^3-x^2-3x-4

=x^3-2x^2+16

H(x)=2x^3-x^2+3x+20+x^3+x^2+3x+4

=3x^3+6x+24

c: K(-2)=(-2)^3-2*(-2)^2+16=0

=>x=-2 là nghiệm của K(x)

H(-2)=3*(-2)^3+6*(-2)+24=24-12-3*8=-12<>0

=>x=-2 ko là nghiệm

a) P(x) = 5x5 - 4x2 + 7x + 15

Q(x) = 5x5 - 4x2 + 3x + 8

b) Có: P(x) - Q(x) = 4x + 7

P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)

8 tháng 3 2023

`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`

`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`

`=5x^5 -4x^2 +7x+15`

`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`

`=(4x^5+x^5) +(-2x^2  -2x^2)+3x+8`

`= 5x^5 - 4x^2 +3x+8`

`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`

`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`

`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`

`= 0 + 0 +4x + 7`

`=4x+7`