K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2014

Câu này bạn Thắng làm đúng.

29 tháng 4 2017

gfd

8 tháng 3 2016

TH1: Cả 2 muối \(NaX\)    và \(NaY\)   đều pứ vs \(\text{AgNO3}\)

Gọi CT chung của 2 muối là \(NaZ\)
\(NaZ\)  + \(AgNO_3\) \(\rightarrow\)  \(NaNO_3\)       + \(AgZ\)
a mol.                                                  =>a mol
có a(108+Z) - a(23+Z) = 85a = 8,61 - 6,03 =2,58
=>a = 0,03=>m\(NaZ\) = 6,03 = a(23+Z) → Z = 178 =>loại
TH2: 2 muối của X và Y lần lượt là \(NaF\)  và \(NaCl\)
Mol \(AgCl\)  =8,61/143,5 = 0,06mol 
\(NaCl\)   +  \(AgNO_3\)   \(\rightarrow\) \(NaNO_3\)  + \(AgCl\)
0,06<=                                   0,06 
m\(NaCl\)  = 0,06.58,5=3,51g
m\(NaF\)   =6,03-3,51=2,52g 
%m\(NaF\)   = 2,52/6,03 .100% = 41,79% 
8 tháng 3 2016

Do AgF tan, khác các muối còn lại nên chia thành 2 trường hợp:
TH1: Hai muối ban đầu là NaF và NaCl —> nNaCl = nAgCl = 0,06 —> %NaF = 41,79%
TH2: Cả 2 muối đều tạo kết tủa:
m tăng = n muối (108 – 23) = 8,61 – 6,03 —> n muối = 0,03 —> M = 198,6 —> Halogen = M – 23 = 175,6: Vô nghiệm

16 tháng 1 2018

Chọn A.

-   Y có cấu hình e là : 1s22s22p63s23p1. Y là Al.

-   Với X, do ep= 2n+1 ≤ 6 và 2≤ n (n=2 trở lên mới có phân lớp p)nên n=2

X có cấu hình e là : 1s22s22p5. X là F. Soxi a cao nht ca F trong hp cht là -1.

8 tháng 3 2016

Fe3O4 + 4H2SO4 -> FeSO4 + Fe2(SO4)3 + H2O;
sau đó Fe2(SO4)3 phản ứng với Cu :
Fe2(SO4)3 + Cu-> CuSO4 + 2FeSO4 (1); => dung dịch X chứa CuSO4 và FeSO4, H2SO4 dư

10FeSO4 + 2KMnO4 + 8H2SO4 -> 5Fe2(SO4)3 + 2MnSO4+ K2SO4 + 8H2O;
=> số mol FeSO4 là : 0,05;mà ban đầu ta có 0,02 mol FeSO4; từ (1) => số mol Cu là 0,015 => m= 0,96

19 tháng 3 2016

Ta có:nHCl=0,04mol

Fe3O4+8HCl\(\rightarrow\)FeCl2+2FeCl3+4H20
Từ PT trên suy ra nFe=0,015mol
mFe3O4=1,16(g)
==>mCu=3,52(g)\(\rightarrow\)nCu=0,055mol
Ta có:BTe nFe=3nAg kết tủa;nCu=2nAg kết tủa
Suy ra nAg kết tủa là 0,155mol\(\Rightarrow\)m kết tủa là 16,74(g)
KL:m=16,74g
16 tháng 2 2017

Đáp án D

22 tháng 4 2016

Áp dụng bảo toàn điện tích ta có:

\(n_{Cu^{2+}}=0,15.2+0,2-0,1.2-0,15=0,15\left(mol\right)\)
\(\rightarrow m_Z=0,15.96+0,2.62+0,1.65+0,15.1+0,15.64\)\(=43,05\left(g\right)\)
11 tháng 4 2016

\(1.\)     \(Fe_2O_3+3CO\rightarrow2Fe+3CO_2\)

\(2.\)     \(3AgNO_3+Al\rightarrow Al\left(NO_3\right)_3+3Ag\)

\(3.\)     \(2HCl+CaCO_3\rightarrow CaCl_2+H_2O+CO_2\)

\(4.\)     \(2C_4H_{10}+13O_2\rightarrow8CO_2+10H_2O\)

\(5.\)     \(6NaOH+Fe_2\left(SO_4\right)_3\rightarrow2Fe\left(OH\right)_3+3Na_2SO_4\)

\(6.\)     \(4FeS_2+11O_2\rightarrow2Fe_2O_3+8SO_2\)

\(7.\)     \(6KOH+Al_2\left(SO_4\right)_3\rightarrow3K_2SO_4+2Al\left(OH\right)_3\)

\(8.\)     \(2CH_4+O_2+2H_2O\rightarrow2CO_2+6H_2\)

\(9.\)     \(8Al+3Fe_3O_4\rightarrow4Al_2O_3+9Fe\)

\(10.\)   \(Fe_xO_y+\left(y-x\right)CO\rightarrow xFeO+\left(y-x\right)CO_2\)

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D