Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Baif 2:a:
Co:A=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2
A=1+3/n-2
=>A thuoc Z <=>3/n-2 thuoc Z <=>3 chia het cho n-2
=>n-2 thuoc U(3) <=>n-2 thuoc (-1;1;-3;3)
<=>n thuoc (1;3;-1;5)
b;
Co:A=1+3/n-2
Ta co A lon nhat <=>n-2 la so nguyen duong nho nhat
<=>n-2=1<=>n=3
Khi do A=1+3/3-2=4
Vay GTLN cua A=4 tai n=3
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) \(A=\frac{3n+11}{n-2}\left(n\inℤ\right)\)
Để A là phân số thì n-2\(\ne\)0
<=> n\(\ne\)2
Vậy n\(\ne\)2 thì A là phân số
b) \(A=\frac{3n+11}{n-2}\left(n\ne2\right)\)
Để A có giá trị nguyên thì \(\frac{3n+11}{n-2}\)đạt giá trị nguyên
=> 3n+11\(⋮\)n-2
Ta có 3n+11=3(n-2)+17
Thấy n-2\(⋮n-2\Rightarrow3\left(n-2\right)⋮7\)
Vậy để 3(n-2)+17 \(⋮n-2\Rightarrow17⋮n-2\)
Có \(n\inℤ\Rightarrow n-2\inℤ\Rightarrow n-2\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
Đối chiếu điều kiện ta được n={-15;1;3;19}
Vậy n={-15;1;3;19} thì A đạt giá trị nguyên
Bài giải
a, Ta có : \(B=\frac{3n+18}{n-3}=\frac{3\left(n-3\right)+9+18}{n-3}=\frac{3\left(n-3\right)+27}{n-3}=\frac{3\left(n-3\right)}{n-3}+\frac{27}{n-3}=3+\frac{27}{n-3}\)
B là một số nguyên khi \(3n+18\text{ }⋮\text{ }n-3\) \(\Rightarrow\text{ }27\text{ }⋮\text{ }n-3\text{ }\Rightarrow\text{ }n-3\inƯ\left(27\right)=\left\{\pm1\text{ ; }\pm3\text{ ; }\pm9\text{ ; }\pm27\right\}\)
Ta có bảng :
\(\Rightarrow\text{ }n\in\left\{-24\text{ ; }-6\text{ ; }0\text{ ; }2\text{ ; }30\text{ ; }12\text{ ; }6\text{ ; }4\right\}\)
b, \(B=3+\frac{27}{n-3}\) đạt GTLN khi \(\frac{27}{n-3}\) lớn nhất \(\Rightarrow\text{ }n-3\) bé nhất ( n khác 3 )
Xét 2 trường hợp :
n < 3 => n - 3 < 0 => B < 0
n > 3 => n - 3 > 0 => B > 0
Mà ta đang tìm GTLN của B , n - 3 đạt GTNN và n - 3 > 0 => n - 3 = 1 => n = 4
Vậy GTLN của B = 3 + 27 = 30 khi n = 4