Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{3.4.5.6.....100}{2.3.4.5.6.....99}\)
Rút ra nhé:
\(T=\frac{100}{2}\)
T=50.
Chúc em học tốt^^
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
Ta có:3.A=1+1/3+1/3^2+...+1/3^97 +1/3^98
=>3.A - A=(1+1/3+1/3^2+...+1/3^98 + 1/3^99)-(1/3+1/3^2 +1/3^3+...+1/3^98+1/3^99)
=>2.A=1-1/3^99
=>A=1/2 -1/3^99.1/2 <1/2
Vậy ... T I C K cho mình với nha
Áp dụng công thức: \(1+2+3+...+n=\dfrac{n+\left(n+1\right)}{2}\) ta có:
\(A=\dfrac{2}{2.3}+\dfrac{2}{4.5}+...+\dfrac{2}{98.99}=2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)=\dfrac{64}{99}< \dfrac{66}{99}=\dfrac{2}{3}\)
A=[1/1+1/2+....+1/98]*2*4*...*98*3*33=A=[1/1+1/2+....+1/98]*2*4*....*98*99\(⋮\)99
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times98\)
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times33\times...\times98\)
\(A=\left(3\times33\right)\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
\(A=99\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
Vậy \(A⋮99\)(Vì A có thừa số 99)
ta tính được A=1/6 => 1/6<1/2
Ta có: \(A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=\frac{1}{3}-\frac{1}{3^{99}}\)
\(A=\frac{1}{6}-\frac{1}{2\times3^{99}}\)
Vì \(\frac{1}{2\times3^{99}}>0\) nên \(\frac{1}{6}-\frac{1}{2\times3^{99}}