Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có rắc rối đâu em?
Thực hiện phép tính trong ngoặc lại là ra dạng (n+1)/n.
1 dãy các số liên tục kéo dài nhân với nhau thì triệt tiêu là xong!
Chúc em học tốt!
\(S=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^n}\)
\(3S=3+1+\frac{1}{3}+.......+\frac{1}{3^{n-1}}\)
\(\Rightarrow3S-S=\left(3+1+\frac{1}{3}+......+\frac{1}{3^{n-1}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^n}\right)\)
\(\Rightarrow2S=3-\frac{1}{3^n}\Rightarrow2S=\frac{3^{n+1}-1}{3^n}\Rightarrow S=\frac{3^{n+1}-1}{2.3^n}\)
2A = 2 + 1 + 1/2 + 1/2^2 + ... + 1/2^2011
A = 1 + 1/2 + .. + 1/2^2011 + 1/2^2012
2A - A = 2 + 1 + 1/2 + .. + 1/2^2011 - 1 - 1/2 - ... - 1/2^2011 - 1/2^2012
A = 2 - 1/2^2012
A = \(\frac{2^{2012}-2}{2^{2012}}\)
A = 1+1/2+1/2^2+1/2^3+.....+1/2^2012
2A= 2. (1+1/2+1/2^2+1/2^3+.....+1/2^2012)
2A= 2 + 1 + 1/2 + 1/2^2 + 1/2^3 + ...+ 1/2^2011
2A - A= (2 + 1 + 1/2 + 1/2^2 + 1/2^3+ ...+ 1/2^2011) - (1+1/2+1/2^2+1/2^3+.....+1/2^2012)
1A= 2 + 1 + 1/2 + 1/2^2 + 1/2^3 + ...+ 1/2^2011 - 1-1/2-1/2^2+1/2^3+.....+1/2^2012
1A= 2 - 1/2^2012
A= 2-1/2^2012
A= 2 - 1/2^2012
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)
\(\Rightarrow2A-A=A=2-\frac{1}{2^{2012}}\)
\(T=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(T=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(T=\frac{1}{2}.100\)
\(T=50\)
\(T=\frac{3.4.5.6.....100}{2.3.4.5.6.....99}\)
Rút ra nhé:
\(T=\frac{100}{2}\)
T=50.
Chúc em học tốt^^