K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

\(P=n^3\left(n^2-7\right)^2-36\)

\(P=n\left[n\left(n^27\right)^2-36\right]\)

\(P=n\left[\left(n^3-7n\right)^2-6^2\right]\)

\(P=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(P=\left(n-3\right)\left(x-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

M luôn luôn chia hết cho 3 , cho 5 , cho 7. Các số này đôi một nguyên tố cùng nhau nên B chia hết cho 105

20 tháng 8 2016

à 36n mak bn, k p 36 k đâu

19 tháng 6 2017

Ta có với n chẵn thì giá trị biểu thức trên luôn chẵn

Xét trường hợp n lẻ:

=> n4 lẻ, 6n3 chẵn, 27n2 lẻ, 54n chẵn, 32 chẵn

=> n4 + 6n3 + 272 + 54 + 32 là số chẵn

Vậy, giá trị biểu thức đã cho luôn chẵn với n thuộc Z

19 tháng 6 2017

còn cách nào khác không nhỉ?

28 tháng 9 2016

Giả sử nvà n là số lẻ

Ta có n2 = n.n 

Vì n lẻ nên n.n là số lẻ 

=> n2 lẻ (trái giả thiết)

Vậy n2 lẻ thì n lẻ

bài còn lại làm tương tự

28 tháng 9 2016

1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.

Khi đó, n = 2k (k thuộc N*)

Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.

Vậy điều phản chứng sai. Ta có đpcm

2/ Tương tự.

NV
25 tháng 10 2020

\(B=\sqrt[3]{\frac{3}{\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{2}+1\right)^3}}=\sqrt[3]{\frac{3}{\left(\sqrt[3]{2}-1\right)\left(3+3\sqrt[3]{4}+3\sqrt[3]{2}\right)}}\)

\(=\sqrt[3]{\frac{1}{\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}}=\sqrt[3]{\frac{1}{\left(\sqrt[3]{2}\right)^3-1^3}}=1\)