K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

a,   A\(=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x-1}{\sqrt{x}}\)  ĐK  x>0   ;\(x\ne1;x\ne-1\)

    \(A=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}}{x-1}\)

\(A=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}\)=\(\frac{4x^2}{\left(x-1\right)^2}\)

b,  Để  A =2  \(\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Rightarrow4x^2=2\left(x-1\right)^2\)

                     <=>  \(4x^2=2x^2-4x+2\)

                      <=> \(2x^2+4x-2=0\)

                       <=> \(x^2+2x-1=0\)

                       \(\Delta=1^2-1.\left(-1\right)\) =  2

                => \(\orbr{\begin{cases}x_1=-1-\sqrt{2}\left(loại\right)\\x_2=-1+\sqrt{2}\left(nhận\right)\end{cases}}\)

Vậy x=\(-1+\sqrt{2}\)thì  A =2  

c, Thay   x =\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)=2

  =>A  =   \(\frac{4.2^2}{\left(2-1\right)^2}=16\)

Vậy  A=16  thì  x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

a: Ta có: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\dfrac{x-1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-2x^2+4x-2=0\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}-1\\x=\sqrt{2}-1\end{matrix}\right.\)

c: Ta có: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\)

Thay x=2 vào E, ta được:

\(E=\dfrac{4\cdot2^2}{1}=16\)

13 tháng 6 2016

Cô hướng dẫn nhé :) 

a. ĐK: \(x>0;x\ne1\) 

Ta có \(E=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4\sqrt{x}\left(x-1\right)}{x-1}:\frac{x-1}{\sqrt{x}}\)

\(\Leftrightarrow E=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}=\frac{4x^2}{\left(x-1\right)^2}\)

b. Để \(E=2\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Leftrightarrow2x^2+4x-2=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\left(L\right)\end{cases}}\)

c. \(x=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=2\)

Vậy E = 16.

13 tháng 6 2016

a)Rút gọn E ta đc:

\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}\)

b)Với E=2\(\Leftrightarrow\)\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}=2\)

\(\Leftrightarrow\frac{4x^2}{x^2-2x+1}+\frac{2\sqrt{x^3}}{x^2-2x+1}-\frac{4x}{x^2-2x+1}+\frac{2\sqrt{x}}{x^2-2x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x^2\sqrt{x^3}+\sqrt{x}-1\right)}{x^2-2x+1}=0\)

\(\Leftrightarrow x^2+\sqrt{x^3}+\sqrt{x}-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{-\sqrt{x^3}-\sqrt{x}+1}=0\left(tm\right)\\\sqrt{-\sqrt{x^3}-\sqrt{x}+1}+x=0\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\sqrt{5}-3=0\left(loai\right)\\2x+\sqrt{5}-3=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=-\frac{\sqrt{5}-3}{2}\left(tm\right)\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
~~~~~~~~~~Bài 1~~~~~~~~~~Cho \(I=\left(\frac{\sqrt{a}+a}{\sqrt{a}+1}+1\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right):\frac{1-\sqrt{a}}{1+\sqrt{a}}\)       a) Rút gọn biểu thức I.       b) Tính giá trị của biểu thức I khi \(a=27+10\sqrt{2}\)**********Bài 2**********Cho \(J=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)       a) Rút gọn J.       b) Tính giá trị của biểu thức J...
Đọc tiếp

~~~~~~~~~~Bài 1~~~~~~~~~~

Cho \(I=\left(\frac{\sqrt{a}+a}{\sqrt{a}+1}+1\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right):\frac{1-\sqrt{a}}{1+\sqrt{a}}\)

       a) Rút gọn biểu thức I.

       b) Tính giá trị của biểu thức I khi \(a=27+10\sqrt{2}\)

**********Bài 2**********

Cho \(J=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

       a) Rút gọn J.

       b) Tính giá trị của biểu thức J khi \(x=4+2\sqrt{3}\)

       c) Tìm giá trị của x để J > 1.

*~*~*~*~*~*Bài 3*~*~*~*~*~*

Cho \(L=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

       a) Rút gọn biểu thức L.

       b) Tính giá trị của L khi \(x=6+2\sqrt{5}\)

       c) Tìm x để \(L=\frac{6}{5}\)

(Giúp mình với nhé m.n, bài nào / câu nào cũng đk hết ạ, em rất cảm ơn luôn!)

 

 

1
3 tháng 8 2016

bài phân số thì tự mà làm có thấy khó đâu mà phải hỏi

6 tháng 9 2017

\(Q=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)

\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\frac{x}{x-1}\)

\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}.\frac{x}{x-1}\)

\(=\frac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}\)

Nếu  \(x\ge2\) thì 

\(Q=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x\sqrt{x-1}}{\left(x-2\right)\left(x-1\right)}=\frac{2x}{\left(x-2\right)\left(\sqrt{x-1}\right)}\)

Nếu \(x< 2\) thì \(Q=\frac{1-\sqrt{x-1}+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x}{\left(x-2\right)\left(x-1\right)}\)

6 tháng 9 2017

Cảm ơn bạn nhiều nhưng mình thấy \(1-\frac{1}{x-1}=\frac{x-2}{x-1}\)  mà bạn sao lại bằng \(\frac{x}{x-1}\)được 

a: \(P=\dfrac{\left[\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-4+2\left(\sqrt{x}+1\right)\right]}{x+4\sqrt{x}+4}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-4+2\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}\)

\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

c: Để |P|>P thì P<0

\(\Leftrightarrow\sqrt{x}-1< 0\)

hay 0<x<1