K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\) MTC : (x+y)(1-y)(1+x)
A=
\(\dfrac{x^2\times\left(1+x\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{y^2\times\left(1-y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{x^2y^2\times\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
A= \(\dfrac{x^2+x^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{y^2}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{x^3y^2+x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(\dfrac{x^2+x^3-y^2-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

23 tháng 7 2017

\(A=\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)đkxđ: \(y\ne1;x\ne-1;x\ne-y\)\(=\dfrac{x^2\left(1+x\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{y^2\left(1-y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)\(=\dfrac{x^2+x^3-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

\(=\dfrac{\left(x^3+y^3\right)+\left(x^2-y^2\right)-\left(x^3y^2+x^2y^3\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2+x-y-x^2y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)\(=\dfrac{\left(x^2+x\right)-\left(xy+y\right)+\left(y^2-x^2y^2\right)}{\left(1-y\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)-y\left(x+1\right)-y^2\left(x-1\right)\left(x+1\right)}{\left(1-y\right)\left(x+1\right)}\) \(=\dfrac{\left(x+1\right)\left(x-y-y^2x+y^2\right)}{\left(1-y\right)\left(x+1\right)}\)

\(=\dfrac{-\left(y-y^2\right)+\left(x-y^2x\right)}{1-y}\)

\(=\dfrac{-y\left(1-y\right)+x\left(1-y\right)\left(1+y\right)}{1-y}\)

\(=\dfrac{\left(1-y\right)\left(x+xy-y\right)}{1-y}=x+xy-y\)

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

2 tháng 10 2021

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)

\(A=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)

\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)

a) ĐKXĐ : \(x\ne y,1\ne y,x\ne-1\)

Ta có : \(M=\frac{x^2\left(x+1\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

\(=\frac{x^3+x^2-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}=\frac{x^2-xy+y^2+x-y-x^2y^2}{\left(1-y\right)\left(1+x\right)}=....\)

Làm nốt :))

a)Rút gọn được : \(M=x-xy+y\)

b) Để \(M=-2010\Leftrightarrow x-xy+y=-2010\)

\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-2011\)

\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=-2011\)

Bạn làm tiếp, dạng này là dạng cặp ước .

15 tháng 12 2021

\(A=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{2\left(x-2\right)}{x+2}\\ A=\dfrac{2\left(\dfrac{1}{2}-2\right)}{\dfrac{1}{2}+2}=\dfrac{2\left(-\dfrac{3}{2}\right)}{\dfrac{5}{2}}=\left(-3\right)\cdot\dfrac{2}{5}=-\dfrac{6}{5}\)

\(B=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}=\dfrac{-5}{-5+10}=\dfrac{-5}{5}=-1\)