K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

a) Biểu thức trên xác định khi tất cả các phân thức đều xác định

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ 2x – 2 ≠ 0 ⇔ 2x ≠ 2 ⇔ x ≠ 1.

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 – 1 ≠ 0 ⇔ x2 ≠ 1 ⇔ x ≠ 1 và x ≠ -1.

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ 2x + 2 ≠ 0 ⇔ 2x ≠ -2 ⇔ x ≠ -1

Vậy điều kiện xác định của biểu thức là x ≠ 1 và x ≠ -1.

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.

26 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

21 tháng 10 2018

a) Tìm mẫu thức chung rồi xét mẫu thức chung khác 0 rút được x ≠     ± 1 .

b) Thực hiện phép tính để thu gọn M chúng ta có M = 1 3

13 tháng 1 2016

a/. ĐKXĐ : (x-1)(x+1) # 0 => x # 1 hay x # -1

b/. \(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3.2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-4x-3}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{2\left(4-2x\right)}{5}\)

Em xem lại đè nhé. Đề như vậy thì sẽ ko rút gọn đc hết x trên tử. nên B vẫn phụ thuộc vào biến x. 

 

8 tháng 12 2016

chao cac bạn và a chi nếu đề sửa lai vây thi minh làm thế nào ( x+1/2x-2 + 3/x^2+1 - x+3/2x+1 )* (4x^2 -1)/5

25 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy với điều kiện x ≠ 0 và x  ≠   ± 1 thì biểu thức đã cho không phụ thuộc biến x.

7 tháng 1 2021

bạn ơi cho mik hỏi sao x^2+2x+1/x -2x+2/x lại bàng x^2-1/x thế ak

23 tháng 7 2017

a)  ĐK : \(x\ne1\)\(x\ne-1\)

b) Ta có biểu thức:

\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\left(\frac{4x^2-4}{5}\right)\)

\(=\left(\frac{x+1}{2.\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2.\left(x+1\right)}\right).\left(\frac{4.\left(x^2-1\right)}{5}\right)\)

\(=\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}\)

\(=\frac{x^2+2x+2+6-x^2-2x+3}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}=\frac{40.\left(x+1\right)\left(x-1\right)}{10.\left(x+1\right)\left(x-1\right)}=4\)

Vậy giá trị của biểu thức B không phụ thuộc vào biến x khi  \(x\ne1;x\ne-1\)

20 tháng 10 2019

Ta cóGiải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi x + 1 ≠ 0 và x – 1  ≠  0 ⇒ x  ≠   ± 1

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi x – 1 ≠ 0 và x2 – 1  ≠  0 ⇒ x  ≠   ±  1

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy điều kiện để biểu thức xác định x  ≠   ± 1

Ta có

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy với x  ≠ ±  1 thì biểu thức đã cho không phụ thuộc vào x.

21 tháng 4 2017

a) 2x−2=2(x−1)≠0 khi x−1≠0 hay x≠1

x2−1=(x−1)(x+1)≠0 khi x−1≠0x+1≠0

hay x≠1x≠−1

2x+2=2(x+1)≠0 khi x+1≠0 hay x≠−1

Do đó điều kiện để giá trị của biểu thức được xác định là x≠−1,x≠1

b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.

Thật vậy:

18 tháng 7 2017

a, \(2x-2\ne0\) khi \(2x\ne2\Leftrightarrow x\ne1\)

\(x^2-1=\left(x+1\right)\left(x-1\right)\ne0\) khi \(x+1\ne0\)\(x-1\Leftrightarrow x\ne-1\)\(x\ne1\)

\(2x+2=2\left(x+1\right)\ne0\) khi \(x\ne-1\)

điều kiên của x để giá trị của biểu thức được xác định là : \(x\ne-1\)\(x\ne1\)

b, \(\left(\dfrac{x+1}{2x-2}\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)

= \(\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+3\right)}{2\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)

=\(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{40\left(x+1\right)\left(x-1\right)}{10\left(x+1\right)\left(x-1\right)}\)

Vậy giá trị biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến X