Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/question/925458.html
Giống câu hỏi này đó nha
Để A là số nguyên thì \(\frac{2}{n-1}\)là số nguyên
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{-2;-1;+1;+2\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)
Vậy........................ =_=
để \(A=\frac{3}{n-1}\)nguyên khi và chỉ khi 3 là bội của n - 1 hay n - 1 là ước của 3
=> Ư(3) = {+-1;+-3}
=> n - 1 = 1 => n = 1 + 1 = 2
n - 1 = -1 => n = 1 + -1 = 0
n - 1 = 3 => n = 3 + 1 = 4
n - 1 = -3 => n = -3 + 1 = -2
=> n $$ { -1 ; 0 ; 2 ; 3 }
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
A là phân số <=> n thuộc Z
A là số nguyên <=> n-1 là ước của 5
Bạn lập bảng ra rồi tìm x là được.
nhìn vào biểu thức A, ta có thể thấy n-1 là ước của 5 rồi, thế thì cậu chỉ cần lập bảng tìm n là được. chúc bạn học tốt.
Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)
Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
Để A nguyên thì 2 chia hết cho n - 1
=> \(n-1\in\left\{1;-1;2;-2\right\}\)
=> \(n\in\left\{2;0;3;-1\right\}\)
Vậy \(n\in\left\{2;0;3;-1\right\}\)
Để A là số nguyên thì 2 chia hết n - 1 hay n - 1 \(\in\)Ư(2)
Mà Ư(2) = {-2;-1;1;2} => n - 1 \(\in\){-2;-1;1;2}
Vì n là số nguyên nên ta có bảng sau :
Vậy với n \(\in\){-1;0;2;3} thì A là số nguyên
Ủng hộ mk nha !!! ^_^