K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Ta biết sản lượng thu được = năng suất . diện tích.

Sản lượng lúa của HTX A là: 40.150 = 6000 (tạ)

Sản lượng lúa của HTX B là : 38.130 = 4940 (tạ)

Sản lượng lúa của HTX C là : 36.120 = 4320 (tạ)

Tổng sản lượng lúa của cả ba HTX là : 6000 + 4940 + 4320 = 15260 (tạ)

Tổng diện tích trồng của cả ba HTX là : 150 + 130 + 120 = 400 (ha)

Năng suất lúa trung bình của cả ba HTX : 15260 : 400 = 38,15 (tạ/ha)

*Lưu ý: Các bạn không thể tính năng suất trung bình bằng cách :

(40 + 38 + 36)/3 = 38 (tạ/ha)

vì khi chênh lệch diện tích lớn thì số trung bình càng không chính xác.

20 tháng 5 2020

sửa lại giúp

AH
Akai Haruma
Giáo viên
20 tháng 5 2020

Song Thương: cái này bạn phải tự sửa và update phía dưới chứ, vì là đề của bạn chứ mình có biết đề bạn cụ thể thế nào đâu? Đề cho $m,n$ nhưng ở dưới biểu thức lại là $x,y$ rất không liên quan.

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Câu 8:

$(x-1)(2+x)>0$ thì có 2 TH xảy ra:

TH1: \(\left\{\begin{matrix} x-1>0\\ x+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ x>-2\end{matrix}\right.\Rightarrow x>1\)

TH2: \(\left\{\begin{matrix} x-1< 0\\ x+2< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 1\\ x< -2\end{matrix}\right.\Rightarrow x< -2\)

Vậy $x\in (1;+\infty)$ hoặc $x\in (-\infty; -2)$

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Câu 7:

$|x^2+x-12|=|(x-3)(x+4)|$

Nếu $x\geq 3$ thì $(x-3)(x+4)\geq 0$

$\Rightarrow |x^2+x-12|=x^2+x-12$

BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)

Nếu $3> x> -4(1)$ thì $(x-3)(x+4)< 0$

$\Rightarrow |x^2+x-12|=-(x^2+x-12)$

BPT trở thành: $-(x^2+x-12)< x^2+x+12$

$\Leftrightarrow 2(x^2+x)>0\Leftrightarrow x>0$ hoặc $x< -1$

Kết hợp với $(1)$ suy ra $3>x>0$ hoặc $-1> x> -4$

Nếu $x\leq -4$ thì $(x-3)(x+4)\geq 0$

$\Rightarrow |x^2+x-12|=x^2+x-12$

BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)

Vậy BPT có nghiệm $x\in (+\infty; 0)$ hoặc $x\in (-\infty; -1)$

1 tháng 4 2018

cách 1:

ta có : \(\overline{x}=\dfrac{1}{N}\sum\limits^m_{i=1}x_in_i=\dfrac{x_1n_1+x_2n_2+...+x_mn_m}{N}\)

\(\Leftrightarrow\overline{x}=\dfrac{8.2+5.15+2.3+6.10}{30}\simeq5,23\)

\(\Rightarrow S^2=\dfrac{1}{N}\sum\limits^N_{i=1}n_i\left(x_i-\overline{x}\right)^2=\dfrac{2.\left(8-5,23\right)^2+15.\left(5-5,23\right)^2+3.\left(2-5,23\right)^2+10.\left(6-5,23\right)^2}{30}\)

\(\Leftrightarrow S^2=1,7789\)

cách 2 :

ta có : \(S^2=\dfrac{1}{N}\sum\limits^N_{i=1}x_in_i-\dfrac{1}{N^2}\left(\sum\limits^N_{i=1}x_in_i\right)^2\)

thế số vào tính là ra

19 tháng 11 2022

\(y_2=\dfrac{x_2\cdot y_1}{x_1}=\dfrac{4\cdot30}{2}=60\)

=>y3=5*60/4=300/4=75

y4=x4*y3/x3=6*75/5=6*25=150

Câu 1: 

\(VT=\dfrac{\sin x}{\cos x}:\sin x-\dfrac{\sin x}{\dfrac{\cos x}{\sin x}}\)

\(=\dfrac{1}{\cos x}-\dfrac{\sin^2x}{\cos x}=\dfrac{\cos^2x}{\cos x}=\cos x\)

=VP