K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

a/ Ta có: `2a = 3b => a/3 = b/2`

Đặt `a/3 = b/2 = k`   \(\left(k\ne0\right)\)

`=> a = 3k ; b = 2k`

`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)

Vậy `M = 11/38`.

b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015

Vì \(20142015⋮3\) nên \(a^2⋮3\)

\(\Rightarrow a^2⋮3^2\)

\(\Rightarrow a^2⋮9\)

Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)

`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015

\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương   (đpcm)

DD
15 tháng 1 2021

Với \(n\ge5\)

\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)

Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))

mà số chính phương không thể có tận cùng là \(3\)nên loại. 

Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn.