K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

a)  B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0)   B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\)     C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)

31 tháng 8 2019

giải rõ hộ với bạn

15 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}a>0\\b>0\\a\ne b\end{cases}}\)

\(A=\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}-\frac{b}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\frac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(a-b\right)}{\sqrt{ab}\left(a-b\right)}\)

\(\Leftrightarrow A=\left(\sqrt{a}-\sqrt{b}\right)\cdot\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a^2-a\sqrt{ab}-b\sqrt{ab}-b^2-a^2+b^2}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-a\sqrt{ab}-b\sqrt{ab}}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-\sqrt{ab}\left(a+b\right)}\)

\(\Leftrightarrow A=\frac{-\sqrt{a}-\sqrt{b}}{a+b}\)

b) Thay \(a=6-2\sqrt{5}\)và \(b=5\)vào A ta được :

\(A=\frac{-\sqrt{6-2\sqrt{5}}-\sqrt{5}}{6-2\sqrt{5}+5}=\frac{-\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}}{1-2\sqrt{5}}=\frac{1-2\sqrt{5}}{1-2\sqrt{5}}=1\)

Vậy ...

19 tháng 9 2018

https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download

3 tháng 4 2020

a) P = \(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{\left(2.a+2.\sqrt{ab}+2.b\right)}\)

        = \(\left(\frac{3\sqrt{a}.\left(\sqrt{a}-\sqrt{b}\right)-3.a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}\right).\frac{2.\left(a+\sqrt{ab}+b\right)}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)

        \(\frac{a-2.\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\frac{2}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)

          = \(\frac{2}{a-1}\)

b) P nguyên <=> \(\frac{2}{a-1}\)nguyên => 2 \(⋮\)a - 1 

=> ( a- 1 ) = { \(\pm\)1 ; \(\pm\) 2} => a = { -1 ; 0 ; 2 ;3 }