Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)
Mặt khác ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Từ đó suy ra đpcm
Ta có:
\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)
\(\ge2a+2b+2c+2ab+2bc+2ca=12\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)
\(P\ge a^2+b^2+c^2\ge3\)
\(P_{min}=3\) khi \(a=b=c=1\)
TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24
Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai
lần đầu tự làm được 1 bài bđt theo kiểu nháp phát đc liền... hp quớ ~~~
Đặt A = VT
từ giả thiết, ta suy ra:
\(A=\dfrac{b+c+a+b+c-2}{2+a}+\dfrac{c+a+a+b+c-3}{3+b}+\dfrac{a+b+a+b+c-4}{4+c}\)
\(=\dfrac{2\left(a+b+c\right)-2-a}{2+a}+\dfrac{2\left(a+b+c\right)-3-b}{3+b}+\dfrac{2\left(a+b+c\right)-4-c}{4+c}\)
\(=2\left(a+b+c\right)\left(\dfrac{1}{2+a}+\dfrac{1}{3+b}+\dfrac{1}{4+c}\right)-3\)
\(=18\left(\dfrac{1}{2+a}+\dfrac{1}{3+b}+\dfrac{1}{4+c}\right)-3\)
Đặt \(B=\dfrac{1}{2+a}+\dfrac{1}{3+b}+\dfrac{1}{4+c}\)
Áp dụng bđt schwarz cho các số thực không âm:
\(B\ge\dfrac{9}{a+b+c+9}=\dfrac{1}{2}\)
vậy \(A\ge18\cdot B-3=18\cdot\dfrac{1}{2}-3=6\left(đpcm\right)\)
dấu "=" xảy ra khi \(\dfrac{1}{2+a}=\dfrac{1}{3+b}=\dfrac{1}{4+c}=\dfrac{1}{6}\) \(\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=3\\c=2\end{matrix}\right.\)