K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

\(a,\Rightarrow C,A,D\) \(thẳng\) \(hàng\Rightarrow\overrightarrow{CA}+\overrightarrow{CD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{DC}\)

\(D\left(x;y\right)\Rightarrow\overrightarrow{CA}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}-1-x=2\\-2-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)\(\Rightarrow D\left(-3;-2\right)\)

\(b,E\left(xo;yo\right)\Rightarrow\overrightarrow{AE}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}xo-1=-3\\yo+2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xo=-2\\yo=-7\end{matrix}\right.\)\(\Rightarrow E\left(-2;-7\right)\)

\(c,\Rightarrow G\left(xG;yG\right)\Rightarrow\left\{{}\begin{matrix}xG=\dfrac{1+2-1}{3}=\dfrac{2}{3}\\yG=\dfrac{-2+3-2}{3}=-\dfrac{1}{3}\end{matrix}\right.\)\(\Rightarrow G\left(\dfrac{2}{3};-\dfrac{1}{3}\right)\)

a: Tọa độ điểm D là:

\(\left\{{}\begin{matrix}x_D=\dfrac{1-1}{2}=0\\y_D=\dfrac{-2+\left(-2\right)}{2}=-2\end{matrix}\right.\)

NV
23 tháng 12 2022

a.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng

\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác

b.

Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)

Gọi G là trọng tâm tam giác, theo công thức trọng tâm: 

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)

c.

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)

ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)

\(\Rightarrow D\left(5;-5\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Ta có: \(\overrightarrow {AB}  = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC}  = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)

Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.

Vậy A, B, C là ba đỉnh của một tam giác.

b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)

c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)

\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 7\end{array} \right.\end{array}\)

Vậy tọa độ điểm D là (-3; -7).

a: \(\overrightarrow{AB}=\left(-11;11\right);\overrightarrow{AC}=\left(-2;6\right)\)

Vì -11/-2<>11/6

nên A,B,C thẳng hàng

ABCD là hình bình hành

=>vecto DC=vecto AB

=>5-x=-11 và 4-y=11

=>x=16 và y=-7

b: \(\overrightarrow{BH}=\left(x+4;y-9\right)\); vecto BC=(9;-5); vecto AH=(x-7;y+2)

Theo đề, ta có: 

(x+4)/9=(y-9)/-5 và 9(x-7)+(-5)(y+2)=0

=>-5x-20=9y-81 và 9x-63-5y-10=0

=>-5x-9y=-61 và 9x-5y=73

=>x=481/53; y=92/53

c: Vì (d') vuông góc (d) nên (d'): 4x+3y+c=0

Thay x=-2 và y=3 vào (d'), ta được:

c+4*(-2)+3*3=0

=>c=-1

a: vecto AB=(-3;-4)

vecto AC=(3;-2)

Vì -3/3<>-4/2-2

nên A,B,C là ba đỉnh của 1 tam giác

b: Tọa độ G là:

x=(2-1+5)/3=2 và y=(3-1+1)/3=2

=>G(2;2) và A(2;3)

Tọa độ I là:

x=(2+2)/2=2 và y=(2+3)/2=2,5

c: K thuộc Oy nên K(0;y)

vecto AI=(0;-0,5); vecto AK=(-2;y-3)

Theo đề, ta có:

0/-2=-0,5/y-3

=>-0,5/y-3=0

=>Ko có K thỏa mãn

a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)

Vì -1/-5<>2/3

nên A,B,C ko thẳng hàng

=>A,B,C là ba đỉnh của 1 tam giác

b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)

\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)

\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)

\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)

=>sinBAC=0,54

\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)

c: ADBC là hình bình hành

=>vecto AD=vecto CB

=>x-3=2-(-2) và y+1=1-2

=>x-3=2+2 và y=-2

=>x=7 và y=-2

 

5 tháng 12 2023

 a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.

 b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\) 

 Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)

\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)

\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)

\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)

c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.

\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)

\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)

\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

 d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)

 e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.

Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)

\(\Rightarrow D\left(-2;-3\right)\) 

f) Bạn xem lại đề nhé.