K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2023

Ta có : \(B\text{=}\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{99.100}\)

\(B\text{=}\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(B\text{=}\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{100}\)

\(B\text{=}\dfrac{247}{300}\)

Ta có : \(\dfrac{7}{12}\text{=}\dfrac{175}{300};\dfrac{5}{6}\text{=}\dfrac{250}{300}\)

Vì : \(\dfrac{175}{300}< \dfrac{247}{300}< \dfrac{250}{300}\)

\(\Rightarrowđpcm\)

12 tháng 7 2017

2, a-b=ab => a=ab+b => a=b(a+1)

thay a=b(a+1) vào a:b ta có: => b:b(a+1)=a+1

Theo bài ra ta có: a:b=a-b

=> a+1=a-b

=>-b=1

=> b=-1

Thay b=-1 vào a-b=ab ta có : a-(-1)=-a

=> a +1=-a

=>a=-1/2

Vậy a=-1/2. b=-1

24 tháng 7 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+..+\dfrac{1}{9900}\)

\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9900}\right)\)

\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< \dfrac{5}{6}\left(2\right)\)

\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)

24 tháng 7 2017

Ta có :

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+............+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}\)

\(\Leftrightarrow A>\dfrac{1}{12}\)\(\left(1\right)\)

Lại có :

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...........+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-.........-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

\(\Leftrightarrow A< \dfrac{5}{6}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)

14 tháng 11 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{97.98}+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{9506}+\dfrac{1}{9900}\)

\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9506}+\dfrac{1}{9900}\right)\)

\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{97.98}+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< \dfrac{5}{6}\left(2\right)\)

\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)

\(\rightarrowđpcm\)

Chúc bạn học tốt!

14 tháng 11 2017

cảm ơn bạn nhiều nha

mình cũng chúc bạn học tốt

5 tháng 7 2018

Ta có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\Rightarrow A>\dfrac{1}{1.2}+\dfrac{1}{3.4}=\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{14}{24}=\dfrac{7}{12}\)\(\left(1\right)\)

Lại có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-\left(\dfrac{1}{6}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)\(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)

Vậy \(\dfrac{7}{12}< A< \dfrac{5}{6}\) ( Điều phải chứng minh ).

5 tháng 7 2018

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}\right)+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\dfrac{7}{12}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}>\dfrac{7}{12}\left(1\right)\\ \Rightarrow A>\dfrac{7}{12}\left(1\right)\)

Ta lại có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\\ A=\dfrac{5}{6}-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}< \dfrac{5}{6}\\ \Rightarrow A=< \dfrac{5}{6}\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{7}{12}< A< \dfrac{5}{6}\left(dpcm\right)\)

6 tháng 9 2018

A= \(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(1-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

Ta có :

\(\dfrac{7}{12}=\dfrac{7\cdot50}{12\cdot50}=\dfrac{350}{600}\)

\(\dfrac{99}{100}=\dfrac{99\cdot6}{100\cdot6}=\dfrac{594}{600}\)

\(\dfrac{5}{6}=\dfrac{5\cdot100}{6\cdot100}=\dfrac{500}{600}\)

Chỗ này hình như bn viết sai đề nha

QĐMS lên phải là \(\dfrac{7}{12}< \dfrac{5}{6}< A\) chứ

Bn xem lại đề ik nha ☺

THANKSSSSSSSSSSSS

6 tháng 9 2018

Đề mình viết đúng rồi bạn ơi!

10 tháng 4 2017

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)(1)

Lại có:

\(B\)\(=\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)

\(=2013\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\right)\)(2)

Từ (1),(2)\(\Rightarrow\dfrac{B}{A}=2013\)

\(\Rightarrow\dfrac{B}{A}\) là số nguyên

17 tháng 12 2017

Ta có:

A\(=\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+....+\dfrac{1}{99\cdot100}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}...\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}...\dfrac{1}{100}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}...+\dfrac{1}{100}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)

=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

Và:

B=\(\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)

=\(2013\cdot\left(\dfrac{1}{51}+\dfrac{1}{52}+...\dfrac{1}{100}\right)\)

\(\Rightarrow\dfrac{B}{A}=2013\)

Vậy\(\dfrac{B}{A}\)là một số nguyên

20 tháng 6 2017

2) $\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}$

$=>\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1$

$=>\dfrac{x+4}{2000}+\dfrac{2000}{2000}+\dfrac{x+3}{2001}+\dfrac{2001}{2001}=\dfrac{x+2}{2002}+\dfrac{2002}{2002}+\dfrac{x+1}{2003}+\dfrac{2003}{2003}$

$=>\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}$

$=>\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0$

$=>(x+2004)(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}=0$

$=>x+2004=0$

$=>x=-2004$

20 tháng 6 2017

3) Ta có : $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}$

$=>A=\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}$

$=>A>\dfrac{7}{12}(1)$

Ta lại có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}<(1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$

$=>A<\dfrac{5}{6}(2)$

Từ (1)(2) => đpcm.

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

22 tháng 7 2017

1. Tính:

a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)

b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)

c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)

d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)

2. Tính :

a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)

b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)

c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)

d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)

3. Tính :

a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)

b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)

c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)

d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{1}+\dfrac{1}{10}\)

\(=\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

Chế Kazuto Kirikaya thử tham khảo thử đi !!!

23 tháng 7 2017

Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya

d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)