K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

Ta có: \(a^3=\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)^3\)

\(=3+\sqrt{17}+3-\sqrt{17}+3\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\)

(\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\) )

\(=6+3\sqrt[3]{-8}.a=6-6a\)

\(\Rightarrow a^3+6a-6=0\Rightarrow a^3+6a-5=1\)

\(\Rightarrow A=1^{2019}=1\)

 

\(a^3=38+17\sqrt{5}+38-17\sqrt{5}+3\cdot a\cdot\sqrt[3]{\left(38\right)^2-\left(17\sqrt{5}\right)^2}\)

=>a^3=76-3a

=>a^3+3a-76=0

=>a=4

f(x)=(4^3+3*4+1940)^2016=2016^2016

23 tháng 10 2021

Đề sai à bạn

25 tháng 11 2021

mk ghi nhầm =))

b: \(A=\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)

\(=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\)

\(\Leftrightarrow A^3=4+\sqrt{15}+4-\sqrt{15}+3\cdot A\cdot1\)

\(\Leftrightarrow A^3-3A-8=0\)

hay \(A\simeq2.49\)

a: \(B=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow B^3=5-\sqrt{17}+5+\sqrt{17}+3\cdot B\cdot2=10+6B\)

\(\Leftrightarrow B^3-6B-10=0\)

hay \(B\simeq3.05\)

17 tháng 6 2019

a/ \(A=\frac{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}+\frac{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)

\(A=\frac{2+\sqrt{3}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4}{1}=4\)

b/\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

\(A=\frac{\sqrt{2}-1}{3-2\sqrt{2}}-\frac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(A=\frac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}\)

\(A=3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}=8\)

c/ \(A=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}\)

\(A=\frac{5+2\sqrt{15}+3+5-2\sqrt{15}+3}{2}=8\)

d/ theo câu c có \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=8\)

\(\Rightarrow A=8-\frac{\left(\sqrt{5}+1\right)^2}{5-1}=\frac{32-5-2\sqrt{5}-1}{4}=\frac{2\left(13-\sqrt{5}\right)}{4}=\frac{13-\sqrt{5}}{2}\)

10 tháng 7 2019

Câu b đáp án là bằng 2 mới đúng chứ bn!!!