K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

ta có : \(a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}-1\)

\(=\sqrt{2}+\sqrt{7-\sqrt[3]{\left(1+2\sqrt{5}\right)^3}}-1=\sqrt{2}+\sqrt{7-1-2\sqrt{5}}-1\)

\(=\sqrt{2}+\sqrt{\left(\sqrt{5}-1\right)^2}-1=\sqrt{2}+\sqrt{5}-1-1\)

\(=\sqrt{2}+\sqrt{5}-2\)

thế vào máy \(\Rightarrow\) đề sai .

14 tháng 6 2022

kia phải là dấu +1 thì đề mới đúng

 

\(a=\sqrt{2}+\sqrt{7-2\sqrt{5}-1}+1\)

\(=\sqrt{2}+\sqrt{5}-1+1=\sqrt{2}+\sqrt{5}\)

f(x)=x^4(x+2)-14x^2(x+2)+9(x+2)+1

=(x+2)(x^4-14x^2+9)+1

\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left[\left(7+2\sqrt{10}\right)^2-14\left(7+2\sqrt{10}\right)+1\right]\)+1

\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left(89+28\sqrt{10}-84-28\sqrt{10}+1\right)\)+1

=6(căn 2+căn 5+1)+1

3 tháng 10 2018

bài 1 : a) ta có : \(a=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1=\sqrt{2}+\sqrt{7\sqrt[3]{\left(1+2\sqrt{5}\right)^3}}+1\)

\(=\sqrt{2}+\sqrt{7+14\sqrt{5}}+1\)

ta có : \(a^4-14a^2+9=0\Leftrightarrow\left(a^2\right)-14a^2+9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2=7+2\sqrt{10}\\a^2=7-2\sqrt{10}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=89+28\sqrt{10}\\a=89-28\sqrt{10}\end{matrix}\right.\)

\(\Rightarrow\) đề sai

sữa đề rồi mk sẽ lm .

bài 2 : a) ta có : \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}=\dfrac{\sqrt[3]{\left(\sqrt{2}+1\right)^3}}{\sqrt{\left(\sqrt{3}+1\right)^2}-3}=\sqrt{2}+1\)

+) ta có phương trình bật nhất thì chắc chắn không được .

+) phương trình bậc 2 : số liên hợp có tổng nguyên của nó là : \(1-\sqrt{2}\)

\(\Rightarrow\) \(\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)=1-2=-1\)\(1-\sqrt{2}+1+\sqrt{2}=2\)

theo vi ét đảo \(\Rightarrow\) \(1+\sqrt{2}\)\(1-\sqrt{2}\) là nghiệm của \(X^2-2X-1=0\)

b) ta có : \(3x^6+4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)

\(=3x^6-6x^5-3x^4+10x^5-20x^4-10x^3+16x^4-32x^3-16x^2+48x^3-96x^2-48x+118x^2+49x+58\sqrt{2}\)

\(=3x^4\left(x^2-2x-1\right)+10x^3\left(x^2-2x-1\right)+16x^2\left(x^2-2x-1\right)+48x\left(x^2-2x-1\right)+118x^2+49x+58\sqrt{2}\)

\(=118a^2+49a+58\sqrt{2}\)

\(=118\left(1+\sqrt{2}\right)^2+49\left(1+\sqrt{2}\right)+58\sqrt{2}\)

\(=118\left(3+2\sqrt{2}\right)+49+49\sqrt{2}+58\sqrt{2}\)

\(=403+343\sqrt{2}\)

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4

=>2*căn(x+5)=4

=>căn (x+5)=2

=>x+5=4

=>x=-1

b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

=>2*căn x-1=16

=>x-1=64

=>x=65

HQ
Hà Quang Minh
Giáo viên
28 tháng 7 2023

c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)

TH1\(x\ge3\)

\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)

TH2\(2\le x< 3\)

\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH3\(0\le x< 2\)

\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

TH4\(x< 0\)

\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)