K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

a) Ta có:\(\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=\frac{n+5}{n+5}-\frac{7}{n+5}=1-\frac{7}{n+5}\)

Để A nguyên thì (n+5) \(\in\)Ư(7)={1;-1;7;-7)

Ta có bảng sau:

n+51-17-7
n-442-12

Vậy n \(\in\){-4;4;2;-12} để A là số nguyên

20 tháng 5 2022

a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A có giá trị là số nguyên thì:

\(4⋮\left(n-2\right)\)

\(\Rightarrow n-2\inƯ\left(4\right)\)

\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)

b)  \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A là phân số tối giản thì:

\(4⋮̸\left(n-2\right)\)

\(\Rightarrow n-2\notinƯ\left(4\right)\)

\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))

c) Với \(n>2\) (hoặc \(n< -2\)) thì:

\(A=\dfrac{n+2}{n-2}>0\)

Với \(-2\le n< 2\) thì:

\(A=\dfrac{n+2}{n-2}\le0\)

*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)

*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)

*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)

*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)

\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.

Mà với các giá trị nguyên khác (khác 2) của n thì A>0.

\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)

 

 

24 tháng 3 2022

khó nhỉ 

18 tháng 8 2021

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

NM
18 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)