Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A có giá trị là số nguyên thì:
\(4⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(4\right)\)
\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)
b) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A là phân số tối giản thì:
\(4⋮̸\left(n-2\right)\)
\(\Rightarrow n-2\notinƯ\left(4\right)\)
\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))
c) Với \(n>2\) (hoặc \(n< -2\)) thì:
\(A=\dfrac{n+2}{n-2}>0\)
Với \(-2\le n< 2\) thì:
\(A=\dfrac{n+2}{n-2}\le0\)
*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)
*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)
*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)
*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)
\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.
Mà với các giá trị nguyên khác (khác 2) của n thì A>0.
\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
các bạn giúp mk với mai phải nộp rùi