Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cap B\ne\varnothing\Leftrightarrow\left[{}\begin{matrix}m+1< 2m-1< m+3\\m+1< 2m< m+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2< m< 4\\1< m< 3\end{matrix}\right.\) \(\Rightarrow1< m< 4\)
Để \(A\subset B\Rightarrow\left\{{}\begin{matrix}2m-1\ge-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Để \(A\cap B=\varnothing\) \(\Rightarrow\left[{}\begin{matrix}2m+3\le-1\\2m-1\ge1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge1\end{matrix}\right.\)
\(\left(-5;0\right)\cap[2m-1;2m+7)\ne\varnothing\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\2m+7>-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>-6\end{matrix}\right.\) \(\Rightarrow-6< m< \dfrac{1}{2}\)
Lời giải:
Để $(-5;0)\cap [2m-1; 2m+7)$ rỗng thì:
\(\left[\begin{matrix} 2m+7\leq -5\\ 2m-1\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\leq -6\\ m\geq \frac{1}{2}\end{matrix}\right.\)
Để $(-5;0)\cap [2m-1; 2m+7)$ khác rỗng thì:
\(m\in (-6; \frac{1}{2})\)
a: Để A giao B=rỗng thì 2m+3<=-1 hoặc 2m-1>=1
=>m<=-2 hoặc m>=1
b: Để A là tập con của B thì 2m-1>=-1 và 2m+3<=1
=>m>=0 và m<=-1
hay \(m\in\varnothing\)
1. \(A\cap B\ne\varnothing\\ \Rightarrow\left\{{}\begin{matrix}m+2\ge2m\\m\le2m+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\le2\\m\ge-3\end{matrix}\right.\Rightarrow-3\le m\le2\)
2. A là đoạn có độ dài bằng 5 thì:
\(\left|8-m-m\right|=5\\ \Leftrightarrow\left|8-2m=5\right|\\ \Rightarrow\left\{{}\begin{matrix}8-2m=5\\2m-8=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\frac{3}{2}\\m=\frac{11}{2}\end{matrix}\right.\)
3.\(A\cap B=A\Rightarrow\left\{{}\begin{matrix}m\ge-1\\m+5\le3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\ge-1\\m\le-2\end{matrix}\right.\)
Để A giao B khác rỗng thì \(\left[{}\begin{matrix}m+1< 2m\\m+3>2m-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-m< -1\\-m>-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 4\end{matrix}\right.\)
Vậy: Có 2 giá trị nguyên thỏa mãn