Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A<\frac{1}{1\cdot2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}<1<2\)
Đặt \(T=3\cdot5\cdot7\cdot.....\cdot49\)
\(\Rightarrow A\cdot T=\frac{T}{2}+\frac{T}{3}+\frac{T}{4}+....+\frac{T}{50}\)
\(2^4\cdot B\cdot T=\frac{2^4T}{2}+\frac{2^4T}{3}+\frac{2^4T}{4}+....+\frac{2^4T}{50}\left(1\right)\)
Tất cả các số hạng của (1) đều là stn ngoại trừ \(\frac{2^4T}{5}\)
\(\Rightarrow VP\notinℕ\Rightarrow VT\notinℕ\)
Mà \(2^4\inℕ\Rightarrow T\inℕ\)
\(\Rightarrow A\notinℕ\left(đpcm\right)\)
dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha
Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)
còn phần ''b'' bạn hãy tách ra nha
đặt A=1/2^2+1/3^2+1/4^2+...+1/100^2
B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1-\frac{1}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
A=1+[\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)
ta có \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)
=>A<1+\(\left[\frac{1}{1.2}+.........+\frac{1}{49.50}\right]\)
=>A<1+\(\left[\frac{1}{1}-\frac{1}{50}\right]\)
=>A<1+\(\frac{49}{50}\)
=>A<\(\frac{99}{50}\) <2
=>A<2
K MÌNH NHA BÀI NÀY MÌNH GHI MỎI TAY LẮM
A=\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{50^2}\)
A<\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49\cdot50}\)
A<1+\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
A<1+\(\left(1-\frac{1}{50}\right)\)
A<1+\(\frac{49}{50}\)
=>A<2
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50
A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)
A<1-1/50
mà 1/50>0=>1-1/50<1<2
A<1-1/50<1<2
A<2
chúc học tốt