\(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)

a) Tìm x biết \(A...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)

\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)

\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

9 tháng 11 2017

Câu 3

a, ĐKXĐ: x>0, x\(\ne\)4

M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:

M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)

= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)

= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)

Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)

c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)

<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)

<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)

Vì 2>0 <=> \(\sqrt{x}-2< 0\)

<=> \(\sqrt{x}< 2\)

<=> x<4

Vậy để M<1 thì 0<x<4

<=>

9 tháng 11 2017

Câu 2

a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))

<=> \(\sqrt{3x+2}=\sqrt{25}\)

<=> 3x+2=25

<=> 3x= 23

<=> x=\(\dfrac{23}{3}\)

Vậy S= \(\left\{\dfrac{23}{3}\right\}\)

3 tháng 9 2018

Bài 1:

A.\(\left(\sqrt{x}+2\right)\) = -1 (ĐK: \(x\ge0\)

\(\Leftrightarrow\dfrac{1}{x-4}\left(\sqrt{x}+2\right)=-1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-1\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}-2}=-1\)

\(\Leftrightarrow\sqrt{x}-2=-1\)

\(\Leftrightarrow\sqrt{x}=1\\ \Leftrightarrow x=1\left(TM\right)\)

Vậy x = 1

Bài 2: ĐK: \(x\ge0\)

Để \(B\in Z\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)\(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1,\pm3\right\}\)\(\Leftrightarrow x\in\left\{1\right\}\)

Bài 3:

a, Ta có: \(x+\sqrt{x}+1=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+1\\ =\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Ta có: 2 > 0 và \(x+\sqrt{x}+1>0\Rightarrow C>0\)\(x\ne1\)

b, ĐK: \(x\ge0,x\ne1\)

\(C=\dfrac{2}{x+\sqrt{x}+1}\)

Ta có: \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)

Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow x=0\left(TM\right)\)

Vậy MaxC = 2 khi x = 0

Còn cái GTNN chưa tính ra được, để sau nha

Bài 4: ĐK: \(x\ge0,x\ne1\)

\(D=\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)

\(=\sqrt{x}-1\)

\(D=3\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=2\left(TM\right)\)

\(D=x-3\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}-1=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3-\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(L\right)\\x=9\left(TM\right)\end{matrix}\right.\)

Bài 5: \(E< -1\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}+1< 0\Leftrightarrow\dfrac{-3x+2x+4\sqrt{x}}{2x+4\sqrt{x}}< 0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}-x}{2x+4\sqrt{x}}< 0\Leftrightarrow\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)

Ta có: \(\sqrt{x}>0\Leftrightarrow x>0\Leftrightarrow2x+4\sqrt{x}>0\)\(\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)\(\Rightarrow\sqrt{x}\left(4-\sqrt{x}\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 0\left(L\right)\\4-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>0\\4-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\0< x< 16\end{matrix}\right.\)

18 tháng 8 2018

1)

a. \(\sqrt{\dfrac{25}{7}}.\sqrt{\dfrac{7}{9}}=\sqrt{\dfrac{25.7}{7.9}}=\sqrt{\dfrac{25}{9}}=\dfrac{5}{3}\)

b. \(\left(\sqrt{\dfrac{9}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{2}\right).\sqrt{2}=3+1-2=2\)

c. \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=4-12+10=2\)

d. \(\left(\sqrt{\dfrac{2}{3}}-\sqrt{\dfrac{3}{2}}\right)^2=\dfrac{2}{3}+\dfrac{3}{2}-2\sqrt{\dfrac{2}{3}.\dfrac{3}{2}}=\dfrac{1}{6}\)

2)

a. \(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

b. \(\sqrt{8-2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)

c. \(1+\sqrt{6-2\sqrt{5}}=1+\sqrt{5-2\sqrt{5}+1}=1-\sqrt{\left(\sqrt{5}-1\right)^2}=1-\sqrt{5}+1=2-\sqrt{5}\)

d. \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\)

3. \(a.A=x^2+2x+16=\left(\sqrt{2}-1\right)^2+2.\left(\sqrt{2}-1\right)+16=2-2\sqrt{2}+1+2\sqrt{2}-2+16=17\)

\(b.B=x^2+12x-14=\left(5\sqrt{2}-6\right)^2+12.\left(5\sqrt{2}-6\right)-14=50+36-60\sqrt{2}+60\sqrt{2}-72-14=0\)

18 tháng 8 2018

Help me nha leuleu @Phùng Khánh Linh@Nhã Doanh@Liana@Yukru Cảm ơn trước nhé vui

a: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

c: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)

=>\(-10\sqrt{x}+4=\sqrt{x}+3\)

=>x=1/121

d: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)

\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}< =0\)

=>A<=2/3

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2