Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là bài toán ko ai giải đc tuy nhiên mk bít sẽ có 1 trong thế giới này giải đc trong hiện tại hoặc tương lai cố nhé
A = 1, B = 2, C = 3
x = 8, y = 5, z = 3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A, B, C có bội chung nhỏ nhất là 6.
\(x=\frac{a}{m},y=\frac{b}{m},z=\frac{a+b}{2m}.\)
có : \(z=\frac{1}{2}.\frac{\left(a+b\right)}{m}\)
có \(x+y=\frac{a}{m}+\frac{b}{m}=\frac{\left(a+b\right)}{m}\)
\(z=\frac{1}{2}\left(x+y\right)\)
có \(x+x< x+y\) " vì x<y"
nhân 1/2 vào 2 vế của bdt " dấu ko đổi ta được " nhân vào 2x < x+y
\(\frac{1}{2}.2x< \frac{1}{2}.\left(x+y\right)=z\)
vậy suy ra \(x< \frac{\left(x+y\right)}{2}=z\)
lại có x<y
vậy x+y < y+y
nhân 1 /2 vào 2 vế ta được
\(\frac{1}{2}\left(x+y\right)< \frac{1}{2}\left(y+y\right)\)
\(z=\frac{1}{2}\left(x+y\right)< \frac{2y}{2}=y\)
xin bài 2 ............................................ 5 phút nữa làmmmmmmmmmmm
1/
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\
\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)
Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\)
Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14
1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)
vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)
đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)
\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)
đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)
hệ này vô nghiệm nên bât không trở thành đẳng thức
vậy bất đẳng thức được chứng minh
2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)
tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên
\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có
\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)
từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1
aaaakk