Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)
Ta có: \(\frac{a^2+ac}{c^2-ac}=\frac{b^2.k^2+bk.dk}{d^2.k^2-bk.dk}=\frac{bk^2.\left(b+d\right)}{dk^2.\left(d-b\right)}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (1)
\(\frac{b^2+bd}{d^2-bd}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (2)
Từ (1) và (2) => \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)
\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)
\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)
\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)
Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)
Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)
\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)
Rút gọn 2 vế ta đc 0=0
vì 0=0 luôn đúng nên cái phương trình trên luôn đúng
bạn vào link này để xem lời giải nha http://olm.vn/hoi-dap/question/255658.html
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{a}{b}\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{c^2}{d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(dpcm\right)\)
ta có :
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) \(\Rightarrow\) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
đặt \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) = k \(\Rightarrow\) a = ck ; b = dk
\(\dfrac{ac}{bd}\) = \(\dfrac{ck.c}{dk.d}\) = \(\dfrac{c^2.k}{d^2.k}\) = \(\dfrac{c^2}{d^2}\) (1)
\(\dfrac{a^2+c^2}{b^2+d^2}\) = \(\dfrac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}\) = \(\dfrac{c^2.k^2+c^2}{d^2.k^2+d^2}\) = \(\dfrac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\) = \(\dfrac{c^2}{d^2}\)(2)
từ (1) , (2) \(\Rightarrow\) \(\dfrac{ac}{bd}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)
Có:a2/b2=c2/d2=ac/bd=>a2+ac/b2+bd=c2-ac/b2-bd=>a2+ac/c2-ac=b2+bd/d2-bd
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
Ta có:\(\frac{a^2+ac}{c^2-ac}=\frac{b^2k^2+bk.dk}{d^2k^2-bk.dk}=\frac{bk^2\left(b+d\right)}{dk^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(1)
\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(2)
Từ 1 và 2 =>\(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
What là cái gì?