K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

ko biết

28 tháng 11 2016

ta có

a+b+c+d=0

=> b+c=-(a+d) => (b+c)3=-(a+d)3

=> b3+c3+3bc(b+c)= -[a3+d3+3ad(a+d)]

=> a3+b3+c3+d3=-3ad(a+d)-3bc(b+c)= 3ad(b+c)-3bc(b+c)

=3(b+c)(ad-bc)

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

NV
8 tháng 1 2022

1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó

2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3. 

Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)

Ta có 2 TH sau:

- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)

\(\Rightarrow\) Tích đã cho chia hết 12

- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)

3. Với \(n=1\) thỏa mãn

Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)

\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)

Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)

Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)

TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)

\(\Rightarrow n=10m+4\)

TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)

Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5

9 tháng 9 2016

Ta có :

\(a+b+c+d=0\)

\(\Rightarrow b+c=-\left(a+d\right)\)

\(\Rightarrow\left(b+c\right)^2=\left(a+d\right)^2\)

\(\Rightarrow\left(b+c\right)^2-\left(a+d\right)^2=0\)

\(\Rightarrow b^2+c^2+2bc-a^2-d^2-2ad=0\)

Lại có :

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)\left(a^2+d^2-ad\right)+\left(b+c\right)\left(b^2+c^2-bc\right)\)

\(=\left(b+c\right)\left(b^2+c^2-bc\right)-\left(b+c\right)\left(a^2+d^2-ad\right)\)

\(=\left(b+c\right)\left[\left(b^2+c^2-bc\right)\left(a^2+d^2-ad\right)\right]\)

\(=\left(b+c\right)\left[\left(b^2+c^2-bc-a^2-d^2-2ad\right)+3ad-3bc\right]\)

\(=\left(b+c\right)\left[0+3\left(ad-bc\right)\right]\)

\(=3\left(b+c\right)\left(ad-bc\right)\)