K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

Ta có :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\)=> \(a+b+c\ge\sqrt{3}\)

\(\frac{a^3}{b^2+1}=\frac{a^3}{b^2+ab+bc+ac}=\frac{a^3}{\left(b+c\right)\left(b+a\right)}\)

Áp dụng bđt cosi ta có:

\(\frac{a^3}{\left(b+a\right)\left(b+c\right)}+\frac{b+a}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{a^3}{8.8}}=\frac{3}{4}a\)

CM tuong tự

=> \(P+2.\left(\frac{b+a}{8}+\frac{b+c}{8}+\frac{a+c}{8}\right)\ge\frac{3}{4}a+\frac{3}{4}b+\frac{3}{4}c\)

=>\(P\ge\frac{a+b+c}{4}\ge\frac{\sqrt{3}}{4}\)

=>\(MinP=\frac{\sqrt{3}}{4}\)xảy ra khi \(a=b=c=\frac{\sqrt{3}}{3}\)

NV
23 tháng 10 2019

\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)}=3\)

\(\Rightarrow P_{min}=3\) khi \(a=b=c=1\)

2 tháng 2 2020

\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)

\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a+b+c\right)^2}{ab+bc+ca}\)

\(=\left[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\right]+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)

\(\ge2+8+18=28\)

Đẳng thức xảy ra khi \(a=b=c\)

7 tháng 2 2022

Mình thì dư đoán điểm rơi \(a=b=c=1\) rồi, nhưng nháp mãi vẫn không ra được.

\(\frac{a}{b^3+ab}\)=\(\frac{a^2}{b^3a+a^2b}\)

tương tự thì ta có S= \(\frac{a^2}{b^3a+a^2b}\) +     \(\frac{b^2}{c^3b+b^2c}\)   +    \(\frac{c^2}{a^3c+ac^2}\)

áp dụng bất dẳng thức cô si s goát,ta có

S=\(\frac{a^2}{b^3a+a^2b}\)+     \(\frac{b^2}{c^3b+b^2c}\)+    \(\frac{c^2}{a^3c+ac^2}\)\(\ge\)   \(\frac{\left(a+b+c\right)^2}{b^3a+a^2b+c^3b+b^2c+a^3c+c^2a}\)

cái mẫu mk chx nghĩ  ra phân tích ra sao nx,tí nghĩ nốt

26 tháng 1 2018

+ thêm bớt bc,ca,ab lần lượt cho P ta được

\(P=\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}+\frac{b^3}{3b+3ca-\left(ab+ac+bc\right)}+\frac{c^3}{3c+3ab-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si cho mẫu ta có

\(3a+3bc\ge2\sqrt{9abc}=6\sqrt{abc}\)

suy ra

\(\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+Bc\right)}\)

tương tự với các BDT còn lại suy ra :

\(P\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{b^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

đên đây easy chưa ? chung mẫu + lại với nhau ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si ta có

\(ab+bc+ca\le a^2+b^2+c^2\) luôn đúng thay vào ta được

ta có   \(a^2+B^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\) thêm bớt + hằng đẳng thức

thay vào và đổi dấu ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-9+2\left(ab+bc+Ca\right)}+3abc\)

có  \(ab+1\ge2\sqrt{ab}\)

\(ca+1\ge2\sqrt{ac}\)

\(bc+1\ge2\sqrt{bc}\)

\(\Rightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le ab+bc+ca+3\)

ta lại có

\(\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le a+B+c\left(cosi\right)\) suy ra

\(2\left(a+b+c\right)\le ab+bc+ca+3\Leftrightarrow6\le ab+Bc+ca+3\Leftrightarrow ab+bc+ca\ge3\)

  suy ra  

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-9+2\left(3\right)}=\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}\)

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}+3abc\)

ta có

\(a.a.a\le\frac{\left(a+a+a\right)^3}{27}\)

\(b.b.b\le\frac{\left(b+b+b\right)^3}{27}\)

\(c.c.c\le\frac{\left(c+c+C\right)^3}{27}\)

\(a^3+b^3+c^3\le\frac{\left(3a\right)^3+\left(3b\right)^3+\left(3c\right)^3}{27}\)

bạn ơi chắc là đề sai rồi làm sao có thể đi chứng minh được cái

\(a^3+b^3+c^3\le a+b+c\) 

bạn xem lại đi nha @@

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)