K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ ๑๑۩۞۩๑๑ v

13 tháng 6 2016

Bài này chịu mất.Cần có nhiều thời gian suy nghĩ

2 tháng 8 2020

đổi ẩn 

\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)

\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)

dấuu "=" xảy ra khi \(a=b=c=1\)

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

20 tháng 12 2018

\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)

b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)

c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\) 

sau do tinh

cau nay la toan lp 8 nha

20 tháng 12 2018

P= O/ nha

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)Áp dụng bđt Cauchy có \(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)\(\Rightarrow...
Đọc tiếp

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)

Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)

Áp dụng bđt Cauchy có 

\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)

Lại có \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)\(\Rightarrow ab+bc+ca=9-\left(a^2+b^2+c^2\right)\)

Khi đó \(P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\) 

                                                                                     \(=t-\frac{9-t}{t}\)

Với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\Rightarrow t\ge3\)

Đến đây dùng pp điểm rơi là ra

1

Cho hỏi bạn hỏi hay trả lời vậy??????????????????

Ko đăng linh tinh ngoài câu hỏi nha!

23 tháng 11 2015

đây ko phải toán lớp 1 toán lớp 1 làm gì mà khó thế

25 tháng 7 2020

\(\text{Σ}\frac{a}{b+2c+3d}=\text{Σ}\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{6\left(ab+bc+cd+ad\right)}\)

\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}=\frac{a^2+c^2+b^2+d^2+2ab+2cd+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}\)

\(\ge\frac{4\left(ab+bc+cd+ad\right)}{6\left(ab+bc+cd+ad\right)}=\frac{2}{3}\)

Dấu = xảy ra khi a=b=c=d

25 tháng 7 2020

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4.\left(ab+ad+bc+bd+ca+cd\right)}\)\(\ge\frac{\left(a+b+c+d\right)^2}{\frac{3}{2}.\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)

12 tháng 3 2022

Này là bài lớp 4 rồi 

23 tháng 12 2018

Đây mà là toán lớp 1 à ?