Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABK và ΔEBK có
BA=BE
\(\widehat{ABK}=\widehat{EBK}\)
BK chung
Do đó: ΔABK=ΔEBK
Suy ra: KA=KE
Bạn ơi giúp mình giải hết bài này đc ko
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA.Tia phân giác của góc B cắt AC tại K.
a) So sánh AK và KE.
b) Chứng minh EK vuông góc BC.
c) Chứng minh: BK là đường trung trực của đoạn thẳng AE
b: Xét ΔABK và ΔEBK có
BA=BE
\(\widehat{ABK}=\widehat{EBK}\)
BK chung
Do đó: ΔABK=ΔEBK
Suy ra: KA=KE
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a/
Xét tg BAE và tg BKE có
BE chung; BA=BK (gt)
\(\widehat{ABE}=\widehat{KBE}\left(gt\right)\)
=> tg BAE = tg BKE (c.g.c)
b/
Ta có tg BAE = tg BKE (cmt) => AE=KE và \(\widehat{BAE}=\widehat{BKE}=90^o\)
\(\Rightarrow EK\perp BC\)
c/
Xét tg vuông CKE có EC là cạnh huyền => KE<EC (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất)
Mà AE=KE (cmt)
=> AE<EC
d/ Gọi D là giao của BE với AK
Xét tg ABK có
BA=BK => tg ABK cân tại B
BD là phân giác \(\widehat{ABK}\)
=> BD là trung tuyến của tg ABK (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung tuyến)
Có AI là trung tuyến của tg ABK
=> G là trong tâm của tg ABK => BG=2.DG
Xét tg DKG có
\(DK=DA=\dfrac{AK}{2}\) (BD là trung tuyến)
Ta có
\(DG+DK>KG\) (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
\(\Rightarrow DG+\dfrac{AK}{2}>KG\) Mà \(BG=2.DG\Rightarrow BG>DG\Rightarrow BG+\dfrac{AK}{2}>KG\)
a: Xét ΔABD và ΔEBD có
BD chung
AB=EB
AD=ED
Do đó: ΔABD=ΔEBD
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng