Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ đường cao AH
Ta có: \(S_{ABM}=\dfrac{1}{2}.AH.BM;S_{ACM}=\dfrac{1}{2}.AH.CM\)
Mà BM = CM (do M là trung điểm của BC )
\(\Rightarrow S_{ABM}=S_{ACM}\)
b) Ta có: \(S_{ABC}=S_{ABM}+S_{ACM}=S_{ABM}+S_{ABM}=2S_{ABM}\)
a) Xét tam giác ABM và tam giác ACM có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có MB=MC( AM đường trung tuyến)
⇒\(S_{ABM}=S_{ACM}\)(đpcm)
b) Xét tam giác ABM và tam giác ABC có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)
⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)
a) Xét tam giác ABM và tam giác ACM có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có MB=MC( AM đường trung tuyến)
⇒\(S_{ABM}=S_{ACM}\)(đpcm)
b) Xét tam giác ABM và tam giác ABC có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)
⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)
a: BC=15cm
=>AM=7,5cm
b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
a) Ta có \(BC=2BM=2\sqrt{AB^2-AM^2}=2.\sqrt{9}=6\).
b) Xét \(\Delta ABM\) và \(\Delta AMH\) có \(\widehat{AMB}=\widehat{AHM}=90^o;\widehat{BAM}=\widehat{MAH}\)
\(\Rightarrow\Delta ABM\sim\Delta AMH\left(g.g\right)\).
c) \(\Delta ABM\sim\Delta AMH\Rightarrow\dfrac{AB}{BM}=\dfrac{AM}{MH}\Rightarrow\dfrac{AB}{BE}=\dfrac{AM}{MF}\Rightarrow\Delta ABE\sim\Delta AMF\left(c.g.c\right)\Rightarrow\dfrac{AB}{AE}=\dfrac{AM}{AF}\Rightarrow AB.AF=AM.AE\).
d) Gọi T là trung điểm của HC.
Theo tính chất đường trung bình, ta có TF // MC nên TF \(\perp\) AM.
Mà MF \(\perp\) AT nên F là trực tâm của tam giác AMT.
Suy ra \(AF\perp MT\). Mà MT // BH (tính chất đường TB) nên AF \(\perp\) BH.
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Vì AM là tt ứng với ch BC nên \(AM=\dfrac{1}{2}BC=2,5\left(cm\right)\)
b, Vì AM là tt ứng vs ch BC nên \(AM=MB=MC\)
Do đó tg AMC cân tại M nên \(\widehat{MAC}=\widehat{MCA}\)
c, Ta có \(AM=MB\left(cmt\right)\) nên tg ABM cân tại M