K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

a, Xét 2 tam giác vuông ABD và HBD có:

             BD cạnh chung

            HB=AB(gt)

=> t.giác ABD=t.giác HBD(cạnh góc vuông-cạnh huyền)

=> \(\widehat{ABD}\)=\(\widehat{HBD}\)(2 góc tương ứng)

=> BD là tia phân giác của góc ABC

b, xét t.giác ABC có: \(\widehat{BAC}\)+\(\widehat{ABC}\)+\(\widehat{ACB}\)=180 độ

=> 90 độ+60 độ+ \(\widehat{ACB}\)=180 độ

=> \(\widehat{ACB}\)=30 độ(1) mà  BD là tia p/g của \(\widehat{ABC}\)=> DBC=30 độ(2)

từ (1) và (2) suy ra tam giác BDC cân tại D

A B C H D

28 tháng 2 2018

11 tháng 11 2021

a, Xét ΔDHB và ΔDAB ta có:
HB = AB

DB chung

=> ΔDHB = ΔDAB ( cạnh huyền - cạnh góc vuông)

=> DBH^ = DBA^ 

=> BD là tia phân giác ABC^

b, BD là tia phân giác ABC^ 

=> DBA^  = 30

ΔABC vuông tại A có ABC^  = 60

=> ACB^  = 30

Xét ΔDCH và ΔDBA ta có:

DBA^  = ACB^ ( =30)

DH = DA ( do ΔDHA = ΔDAB chứng minh câu a)

=> ΔDCH = ΔDBA ( cạnh huyền - góc nhọn)

=> DC = DB

=> ΔBDC cân tại D

11 tháng 11 2021

a/ Xét tg vuông ABD và tg vuông HBD có

BD chung; HB=AB (gt) => tg ABD = tg HBD (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{ABD}=\widehat{HBD}\) => BD là phân giác \(\widehat{ABC}\)

b/

Xét tg vuông ABC có

\(\Rightarrow\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)

\(\Rightarrow AB=\frac{BC}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (1)

Ta có HB=AB (gt) (2)

Từ (1) và (2) \(\Rightarrow HB=\frac{BC}{2}\) => H là trung điểm của BC => DH là trung tuyến thuộc BC

Mà \(DH\perp BC\) => DH là đường cao của tg BDC

=> tg BDC cân tại D (Trong tg nếu đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

29 tháng 4 2019

a, xét tam giác CMA và tam giác BMD có : AM = MD (gt)

BM = CM do AM là trung tuyến (gt)

góc CMA = góc BMD (đối đỉnh)

=> tam giác CMA = tam giác BMD (c - g - c)

=> BD = AC (đn)

29 tháng 4 2019

Bạn Đồng Hiên ơi bạn ko làm câu b à

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

9 tháng 4 2019

A B C I M D H K

a) Xét  \(\Delta AIB\),\(\Delta AIC\) có: ^BAI=^CAI (gt) , AI chung, AB=AC

=>\(\Delta AIB\)=\(\Delta AIC\)(c.g.c)

b) Xét\(\Delta AMD\), \(\Delta CMB\) có: ^AMD=^BMC (2 goc đối điỉnh)

AM=MC(gt) ; BM=MD(gt)

=>\(\Delta AMD\)=\(\Delta CMB\)(c.g.c)

=> AD=BC ;  BD=AC

Xét \(\Delta ABC\) => AB+BC>AC ( bđt trong tam giác)

mà AC=BD => AB+BC>BD

c) xét \(\Delta AHM\),\(\Delta CKM\) (^AHM=^CKM=90o) có: AM=MC(gt) ,  ^AMH=^CMK ( 2gocs dd)

=>\(\Delta AHM\)=\(\Delta CKM\)

=>AH=CK

=>AH+CK=2AH

Xét \(\Delta AHM\) vuông tại H:=> ^AMH< ^AHM

=> AM>AH

=>2AM>2AH

mà 2AM=AC(gt) 2AH= AH +CK

=>AC>AH+CK

9 tháng 12 2016

Kí hiệu tam giác là t/g nhé

a) t/g ABC vuông tại A có: ACB + ABC = 90o

=> 36o + ABC = 90o

=> ABC = 90o - 36o = 54o

b) Xét t/g ABD và t/g EBD có:

AB = BE (gt)

ABD = EBD ( vì BD là phân giác của ABE)

BD là cạnh chung

Do đó, t/g ABD = t/g EBD (c.g.c) (đpcm)

c) Xét t/g ABD vuông tại A và t/g BAK vuông tại B có:

ABD = BAK (so le trong)

AB là cạnh chung

Do đó, t/g ABD = t/g BAK ( cạnh góc vuông và góc nhọn kề)

=> BD = AK (2 cạnh tương ứng) (đpcm)

d) Dễ thấy, CA, BH, FE là 3 đường cao của t/g BCF

Do đó 3 đường này cùng đi qua 1 điểm

Mà BH và CA cắt nhau tại D

Nên EF đi qua D

=> E, D, F thẳng hàng (đpcm)

 

9 tháng 12 2016

Câu d sai, lm lại

Nối đoạn FD

t/g BAC = t/g BEF ( cạnh góc vuông và góc nhọn kề)

=> BC = BF (2 cạnh tương ứng)

t/g CBD = t/g FBD (c.g.c)

=> CD = FD (...)

t/g CDH = t/g FDH ( cạnh góc vuông và cạnh huyền)

=> CDH = FDH (...)

Có: CDH + CDE + EDB = 180o

Mà CDH = ADB ( đối đỉnh)

= FDH = EDB

Do đó, CDH + CDE + HDF = 180o

=> EDF = 180o

=> E, D, F thẳng hàng (đpcm)