Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kiểm tra lại đề bài nhé!
Câu a) 62+122\(\ne\)152 nên tam giác ABC không thể vuông
Tự vẽ hình nhé bạn:vv
a) Xét ∆MHC và ∆MKB:
\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)
\(CM=MB\left(gt\right)\)
\(HM=MK\left(gt\right)\)
=> ∆MHC=∆MKB(c.g.c)
b) Vì ∆ABC vuông ở A có đường trung tuyến AM
\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)
=> ∆AMC cân tại M
=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.
=> AH=CH
Mà theo câu a: ∆MHC=∆MKB
=> CH=KB (2 cạnh tương ứng)
=> AH=KB
=> Đpcm
c) Xét ∆ABC có : AM và BH là 2 đường cao
=> I là trọng tâm của ∆ABC
Mà D là trung điểm của AB
=> CD là đường cao thứ 3 của ∆ABC
=> CD phải đi qua trọng tâm I
=> C, D, I thẳng hàng.
a) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
a)Ta có : 9^2+12^2=
=81+144=225
Căn bậc 2 cua 225 = 15
Vây tam giác ABC vuông
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
Do đó: ΔMHC=ΔMKB
a: BC=căn 6^2+8^2=10cm
b: Xét ΔMHC và ΔMKB có
MH=MK
góc HMC=góc KMB
MC=MB
=>ΔMHC=ΔMKB
c: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>MH là phân giác của góc CMA
d:
Xét ΔCAB có
M là trung điểm của CB
MH//AB
=>H là trung điểm của AC
Xét ΔCAB có
AM,BH là trung tuyến
AM cắt BH tại G
=>G là trọng tâm
=>C,G,I thẳng hàng